EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/SL/93-7? (AP)

The MAD Program
(Methodical Accelerator Design)
Version 8.10
Programmer’s Reference Manual

Hans Grote
F. Christoph Iselin

Abstract

MAD is a tool for charged-particle optics in alternating-gradient accelerators and beam
lines. It can handle from very large to very small accelerators, and solve various problems
on such machines.

This document outlines the data structures used in MAD. It intends to help program-
mers to add new features to the program.

Geneva, Switzerland
September 15, 1994

The MAD program contains the following copyright note:

CERN

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Program name: MAD --- Methodical Accelerator Design

CERN program library entry: T5001

Authors or contacts: Hans Grote, F. Christoph Iselin
SL Division
CERN
CH-1211 GENEVA 23
SWITZERLAND

Tel. [0041] (022) 767 36 57
FCI at CERNVM.BITNET

Copyright CERN, Geneva 1990 - Copyright and any other appropriate legal
protection of this computer program and associated documentation reserved in all
countries of the world.

Organizations collaborating with CERN may receive this program and documentation
freely and without charge.

CERN undertakes no obligation for the maintenance of this program, nor
responsibility for its correctness, and accepts no liability whatsoever resulting
from its use.

Program and documentation are provided solely for the use of the organization to
which they are distributed.

This program may not be copied or otherwise distributed without permission. This
message must be retained on this and any other authorized copies.

The material cannot be sold. CERN should be given credit in all references.

Preface

The MAD framework should make it easy to add new features in the form of program modules. The
authors of MAD hope that such modules will also be contributed and documented by others. The
contributions of other authors are acknowledged in the relevant chapters.

Misprints and obscurity are almost inevitable in a manual of this size. Comments from readers are
therefore most welcome. They may also be sent to one of the following BITNET addresses:

FCI at CERNVM.CERN.CH.bitnet
HANSG at CERNVM.CERN.CH.bitnet
KEIL at CERNVM.CERN.CH.bitnet

Contents

I Introduction 1
1 A Short Introduction to ZEBRA 3
1.1 Why Use ZEBRA? e 3
1.2 Logical Data Structures i e e e 3
1.2.1 The Bank o o i e e e e e e e e e e e e e e e e 3

1.2.2 The Linear Structure i i i i i e e e e e e e e e 4
1.2.3 The General Data Structure i, 4
1.24 Reverse Links e e e e e e e e e e e 4
1.2.5 Reference Links i i i e e e e e e e e e e 5

1.3 Physical Storage e e e e e e e 5
1.3.1 Divisions i e 7
1.3.2 Link Areas o . v i it e 7
1.3.3 Double Precision Data e e 7

1.3.4 Character Data 0 i i it e e e e e e e e e e e e e e e 7
1.3.5 Working Space o e e e 7

1.4 Dropping Banks and Garbage Collection 8
2 MAD Data Structures 9
2.1 Conventions v v v v v it e 9
2.2 The Root Bank i i e e e e e e e e e e e e 10
2.3 Keyword and Command Tree o e e 11
2.4 Keyword Banks e e e e e e e e e e e e e e e 12
2.4.1 Keyword Attributes e e e e e e e e e e e e 12

2.5 Process and Subprocess Codes L e 13
2.6 Command Banks i e e e e e e e e e e e e 15
2.6.1 Command Attributes e e e e e e e e e 15
2.6.2 Name Attributes o e e e e e e e e e e e e e e e 15
2.6.3 Integer Attributes e e 16
2.6.4 Real Attributes or Deferred Expressions 16
2.6.5 Logical Attributes 0 i e e e 16
2.6.6 String Attributes L e e e 18
2.6.7 Beam Line References it teieennnan 18
2.6.8 Range References o o i e e 18
2.6.9 Constraints i e 19
2.6.10 Variable References i e e e e e 19

2.7 Beam Line Banks e e e e e e e e e e 20
2.8 Beam Sequencesot e e e e e e e e e e e e e 21
2.9 Directories. i e 21
2.9.1 Directory Structures e e e e e e 21

2.10 Beam Line Expansions o o v v i v it e e e e e e e e e e 22
2.10.1 Flag Words« v v v v i et e e e e e e e e e e e e e 22
2.10.2 Machine Imperfections L L e 26
2.10.3 Element, Corrector and Monitor Tables 26

2.11 Bank Status Bits e e e e e e e e e e e e e e e 27

4 CONTENTS

3 Global Common Blocks 29
3.1 Common Block /REFER/ i e 29
3.2 Common block BEAM and BEAM bank, 30
3.3 Keyword Data e e e e e 31
3.4 TRANSPORT Map for Current Element 32
3.5 TRANSPORT Map forone Turn ittt 32
3.6 Lattice Functions for Beginning of Line, 32
3.7 Lattice Functions for Current Position 33
3.8 Option Flags o o o o v i e e e e 34
3.9 Physical Constants L L e e e 35
3.10 Data for Main Working Beam Line o 36
311 Status Flags . . . o o o 0 o i e e e e e e 36
3.12 Summary Data for Optics e e 38
3.13 Logical Unit Numbers for Input and OQutput 39

II MAD Subroutines and Functions 41

4 Main Module “AA” 43
4.1 Statement Execution e 43
4.2 Switch Routine for Executable Commands 43
4.3 Book a New Statement Bank oo L. 44
4.4 Attribute Decoding L L e e e e e 44
4.5 Copy Attribute from a Bank to Another o L 44
4.6 Dropping a Command or Definition 45
4.7 Dump a Command or Element Definition 45
4.8 Program Messages i i it e e e e e e e e e e e e e e 46
4.9 Precomputed Maps L L e e e e e e e e e e 47
4.10 Check Validity for Redefinitions 47

5 Beamparam Module “BM” 48

6 Closed Orbit Correction Routines “CQ” 49

7 Decoder Routines “DC” 50
7.1 Decode a Single Command Attribute L oo oL 50

8 Directory Routines “DI” 51
8.1 DefiningaName 0 i i i i it e e e e 51
8.2 Removing a Definition o e 51
83 FindingaName. o i i i i i i e e e e 52
8.4 RetrievingaName o o o e e e e 52
8.5 Creating a Directory o v v i i i i e e e e 52
8.6 ReferringtoaName o 0 i i i e e 52

9 Emittance-Related Routines “EM?” 53

10 Environment Setup “EN” 54
10.1 Fixup BEAM Data e e e 54
10.2 Alter RF Frequencies 0 i i i e e e e e e e 54
10.3 Update BEAM Common from BEAM Bank 54

10.4 Update Beam Bank from BEAM Common. 55

CONTENTS

10.5 Encode a Range Reference o o e
10.6 Perform an Action on all ElementsofaRange
10.7 Perform an Action on all Elements Having a Given TYPE

11 Error Definitions “ER”

12 Expression Handler “EX”

12.1 Dump an Expression Bank
12.2 Evaluate a Single Expression o0 it e
12.3 Fill in Variable References L L e
12.4 Link a New Expression Banko,
12.5 Link a New Variable Reference Bank
12.6 Build an Expression Bank from Table
12.7 Order Arithmetic Expressions for Proper Evaluation
12.8 Decode a Single Expression o e e
12.9 Evaluate All Non-Deferred Expressions

13 File Handlers “FL”

13.1 Closea File o e e e e e e
13.2 Delete a File o L o e e e e e e
13.3 Shut down File System e
13.4 Initialize File System L e
13.5 Retrieve File Name from File Table
13.6 Convert File Name Depending on Operating System
13.7 Opena File e

14 HARMON Module “HA”

15 Keyword Module “KW?”

15.1 Write Keyword Definition on ECHO File.
15.2 Unpack Keyword Definition o oo
15.3 Book New Keyword Bank
15.4 Pack Keyword Definition. Lo e

16 Lie-Algebra Module “LA”

16.1 Operations on General Maps 0 it e
16.1.1 One-Turn Maps o o o o i e e e e e e e e e
16.1.2 Transform Polynomial with a Transfer Map
16.1.3 Transform Map to Map about an Orbit

16.2 Operations on Static Maps L e
16.2.1 Betatron factor of a StaticMap oo o oL,
16.2.2 Chromatic expansion of a Static Matrix
16.2.3 Eigenvalues and Eigenvectors of a Static Matrix
16.2.4 Purify Static Map e

16.3 Operations on Dynamic Maps o o e
16.3.1 Eigenvalues and Eigenvectors of a 6 x 6 Matrix
16.3.2 Purifying DynamicMap o e

55
55
56

57

58
59
59
59
59
59
59
60
60
61

62
63
63
63
63
63
64
64

66

67
67
67
68
68

17

18

19

20

CONTENTS

Lie-Algebraic Maps “LM?” 74
17.1 Concatenate two Maps L e e e e 75
17.2 Find Closed Orbit and Map about the Closed Orbit 75
173 CopyaMap o . o e e e e e e e e e e e 75
17.4 Track with the Generating Function Method 76
17.5 Apply Exponential of a Lie operator to a Polynomial 76
17.6 Find Fixed Point of a Static Map as a Functionof § 77
17.7 Invert Lie-algebraic Map o o o o i i i e e e 77
17.7.1 Return Transfer Map for Any Element 77

17.8 Wipe out Monomial Coefficients as Specified 77
17.8.1 Identity Map o o e e e e e e e e 78

17.9 Print Representations of Lie-algebraic Maps 78
17.10Reflect a Map o L e e e e e e e e e 78
17.11Reverse the Order of Factorization 78
17.12Conjugate a Map L L e e e e e e e e e e e e 78
17.13Modify Map for Rotated Elements 79
17.13.1Map for User-Defined Element 79
Beam Lines “LN” 80
18.1 Check for Valid USE Command 0., 80
18.2 Dump Beam Line Definitiono L o o oo o 81
18.3 Expand a Beam Line Reference o o . 81
Matching Module “MT?” 82
19.1 Changes Required to Add New Constraint Types 83
19.2 Changes Required to Add New Matching Methods 83
Matrix Utilities “M66” 84
20.1 Add two Matrices. L e e e e e e e e 84
20.2 Multiply Matrix by Vector e e 84
20.3 Copy a Matrix o e e e e e e e e 85
20.4 “Divide” two Matrices L. L e e e e e e e 85
20.5 Exponentiate a Matrix Lo e e e 85
20.6 Invert a Symplectic Matrix oL e e 85
20.7 Matrix for Poisson Bracket with Second-Order Polynomial 86
20.8 Multiply Two Matrices o . o e e e e e e 86
20.9 Multiply Matrix by Transpose of Another Matrix 86
20.10Return Norm of a Matrix e 86
20.11Build Identity Matrix o . L e e e e e e e 86
20.12Print a Matrix o o e 87
20.13Reflect a Symplectic Matrix oL e e 87
20.14S5cale a Matrix L e e e e e e e e e e e e e 87
20.15Determine if a Matrix is Statico o Lo Lo 87
20.16Subtract two Matrices L. L. L e e e 87
20.17Transpose a Matrix o 0 i i e e e e e e e 88
20.18Multiply a Matrix by the Transpose of Another One 88

20.19Set a MatTix t0 ZeTO . . . v v v v i i e 88

CONTENTS 7

21 Polynomial Algebra “PA” 89
21.1 Initialize Polynomial Package e 89
21.2 Derive Polynomial in Three Variables 89
21.3 Add Two Polynomials in Six Variables 90
21.4 Poisson Bracket of Two Polynomials in Six Variables 90
21.5 Clear a Polynomial in Six Variables. 90
21.6 Copy a Polynomial in Six Variables 0., 91
21.7 Differentiate Polynomial in Six Variables, 91
21.8 Find Norm of a Polynomial in Six Variables 91
21.9 Multiply Two Polynomials in Six Variables 91
21.10Print a Polynomial in Six Variableso 000 92
21.11Scale a Polynomial in Six Variables o o oL 92
21.12Subtract Two Polynomials in Six Variables 92
21.13Scaled Sum of Two Polynomials in Six Variables 93
21.14Value of a Polynomial in Six Variables 93
21.15Transform Arguments of a Polynomial in Six Variables 93

22 Plot Module “PL” 94
22.1 Make Tune Plot o . e e e e 94
22.2 Dump Plot Bank e 94
22.3 Tune Plot Constraints L 0 e e e e e 94
22.4 Interpolate Twiss Variables oo o 95
22.5 Plot one Complete Picture e 95
22.6 Prepare one Complete Picture o o oL 95
22.7 Check Tune Plot Constraints 96

23 Print Utilities “PR” 97
23.1 Print a Line of Dashes overthe Page 97
23.2 Print page Header 0 i e e 97

24 Low-Level Reading Routines “RD?” 98

25 Survey Module “SU” 99
25.1 Displacement and Rotation for an Element 99
25.2 Displacement and Rotation fora Beam Line 99
25.3 Transform Displacement and Rotation with a Rotation 100
25.4 Displacement and Rotation for User-Defined Elements 100

26 Formatted write routines “SV?” 101

27 Dynamic Table Handler “TB” 102
27.1 Close a Dynamic Table e 103
27.2 Find a Table Column and its Format by Name 103
27.3 Create a Dynamic Table e 103
27.4 Delete a Dynamic Table o e 104
27.5 Retrive a Table Descriptor 0 e e e 104
27.6 Open an Existing Dynamic Table 104
27.7 Add a Table Descriptor e e e 104
27.8 Read a Table in ASCII TFS Format 105
27.9 Set Table Segment o e e e e e e e 105

27.10Set Table Row & i i e 105

28

29

30

31

32

33

CONTENTS

27.11Write a Table in ASCII TFS Format, 105
Transport Maps “TM” 106
28.1 Concatenate two TRANSPORT Maps 107
28.2 Derivative of Transfer Matrix with Respect toép/p 107
28.3 Transfer Matrix with Respect to Given Orbit 107
28.4 Invert a TRANSPORT Map o i i et e e e e e e e 108
28.5 TRANSPORT Map for Single Elementso 108
28.6 Add Symmetric Part to TRANSPORT Map 108
28.7 Transfer Matrix with Respect to Ideal Orbit 108
28.8 Reflect a TRANSPORT Map o i ittt et et et 109
28.9 TRANSPORT Map with respect to Closed Orbit 109
28.10Make T Array Symmetric Lo e e e e e e e 109
28.11Symplectify B Matrix o . o e e e e e e 109
28.12Conjugate a TRANSPORT Map with a Rotation around the s-Axis 109
28.13Track Orbit Through a TRANSPORT Map v i i v i v v oo v v 110
28.14Closed Orbit and TRANSPORT Map oo, 110
28.15TRANSPORT Map for User-Defined Element 111
“TAPE3” Routines “TP” 112
Tracking Module “TR” 113
TRANSPORT Tracking Routines “TT?” 114
31.1 Track through an Element by TRANSPORT Method 114
31.2 Apply TRANSPORT Maptoa Setof Rays 115
31.3 Track through User-Defined Elements 115
Twiss Routines “TW?” 116
Utility Routines “UT?” 117
33.1 Retrieve Current Working Beam Line and Range 117
33.2 Clear Occurrence Counters In Data Bank Directory 118
33.3 Retrieve Data and Pointers for Current Element 118
33.4 Fetch Attributes from Command or Definition Banks 119
33.4.1 Real or Deferred Values 119
33.4.2 Integer Values o i i i i i i i e e e 119
33.4.3 Logical Values o i i i i i i e e 119
33.4.4 Name Values e 119
33.4.5 String Values o o i e e e 120

33.56 Data Type Flags o o e e e e e 120
33.6 Ranges and Positions L e e 120
33.7 Find Last Non-Blank Characterina Name 120
33.8 Look up Nameina Table 121
33.9 Generate Unique Name i 121
33.10Pattern Matching 0 o e e e e e 121
33.11Store Attributes in Command or Definition Banks 122
33.11.1Real Values e e 122
33.11.2Integer Values o i i i i it e e e e e e e 122
33.11.3Logical Values @ i i i i i e e e e e 122

33.11.4Name Values i i i it e 122

CONTENTS 9

34 Miscellaneous Routines in MAD 123
III CERN Library Routines Called by MAD 125
35 ZEBRA Routines 127
35.1 Dump ZEBRA Bank e e e 127
35.2 End ZEBRA Input o . e e e 128
35.3 End ZEBRA Output o . e e e e 128
35.4 Declare File to ZEBRA e e 129
35.6 ZEBRA Input e e e e e e e 129
35.6 ZEBRA Output e e e e e e e 130
35.7 Search Linear List for Word o o 130
35.8 Find Last Bank in Linear List o o .. 130
35.9 Search Linear List for Word String o o o 130
35.10Book New Bank e e e 130
35.11Copy Bank or Structure L 131
35.12Drop Bank or Structure L. e e e 131
35.13Initialize ZEBRA System L e e e 131
35.14End of ZEBRA Processing o . o i e e e e e 132
35.15Flag Bank or Structure e e e 132
35.16Garbage Collection o v o v v i i e e e e e e 132
35.17Declare Link Area L 132
35.18Test for Available Space L e 133
35.19Change Bank Size 0 e e e e e 133
35.20Initialize ZEBRA Store e e e 134
35.21Print ZEBRA Version e e e e e 134
35.22Wipe Out Division o . o e e e e e e 134
35.23Allocate Working Space oL e e e 135
35.24Find Number of Banks in Linear List, 135
35.25Fatal Termination o . L. e e e e e 135
35.26Fatal Termination with Message o i i i it 135
35.27Switch Processing Phase L e 136
35.28Change Bank Linkage o e e e 136
35.29Reverse Order of Linear List o .. 136
36 Other Routines External to MAD 137
36.1 GX Package, High-Level Plot Routines 137
36.2 GKS Plotting Routines o e e 138
36.3 EPIO Routines, Machine-Independent Binary I/O 138
36.4 Miscellaneous Routines L e 139
A An Example of a New Element: Wiggler 140
B An Example of a New Module: Part List 141
C Indexing Scheme for Symbolic Polynomials 142
C.1 First-Order Terms o i i e e e e e e e e e e e e e 142
C.2 Second-Order Terms o i i i i i e e e e e e e e e e e e 142
C.3 Third-Order Terms L i it e e e e e e e e e e e 142

C.4 Fourth-Order Terms ¢ v v i i v i i e 142

10

C.5
C.6

CONTENTS

Fifth-Order Terms & v v v i e 143
Sixth-Order Terms . . . & . o v v v e 144

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

4.1

6.1

7.1

8.1

9.1

10.1

11.1

12.1

A Linear Structure containing Element Definitions 4
Example of a General Data Structure, 5
Schematic Overview of ZEBRA Links 5
Layout of a ZEBRA Bank 6
Structure of the Keyword Tree, 11
Structure of Keyword Directory o 22
Structure of Beam Line Expansion 0., 25
ZEBRA Data Types o o o i i i e e e e e e e e e e e e e 9
Structure of the Root bank o o 10
Structure of Keyword Bank L o L oo 12
Structure of Keyword Attribute Group L oo, 12
Process and Subprocess Codes L L e 13
Structure of Command Bank L o Lo Lo, 15
Structure of Command Attribute Group L. 15
MAD Data Types . . . o o o v i e e e e e e e e e e e e e e e e e 16
Structure of Expression Bank o o Lo oL 17
Operation codes in Expression Bank, 17
Structure of Range Reference Bank o0 18
Structure of Constraint Bank o0 0. 19
Structure of Variable Reference Bank o 00000, 19
Structure of Beam Line List oL e 20
Beam Line List Cells o o e e e e 21
Structure of the First Bank of a Beam Line Sequence 23
Structure of the Second Bank of a Beam Line Sequence 23
Flag Words in Beam Line Expansions 23
Structure of Beam Line Expansion 0., 24
Status bits in Corrector and Monitor Banks 27
Routines in the AA Module oo 43
Routines in the COmoduleo o o 49
Routines in the DCmodule o o o 50
Routines in the DImodule o oo 51
Routines in the EMmodule o o 53
Routines in the ENmodule L o o 54
Routines in the ERmodule L o o 57

Routines in the EXmodule i i i e e e e e e e e e e e e e 58

CONTENTS 11

13.1

14.1

15.1

16.1

17.1

18.1

19.1

20.1

21.1

22.1

23.1

24.1

25.1

26.1

27.1

28.1

29.1

30.1

31.1

32.1

33.1

34.1

35.1

36.1
36.2
36.3
36.4

Routines in the FL module L o o 62
Routines in the HAmodule o o o 66
Routines in the KWmodule o o 67
Routines in the LAmoduleo oL o 69
Routines in the LM module Lo o 74
Routines in the LNmodule L o oo 80
Routines in the MTmodule o o o 82
Routines in the M66 moduleo e 84
Routines in the PAmoduleo o o o 89
Routines in the PLmodule o o o 94
Routines in the PRmodule L o o 97
Routines in the RDmodule o o o 98
Routines in the SUmodule L o o 99
Routines in the SVmodule Lo o 101
Routines in the TBmodule o o 102
Routines in the TMmodule o oo 106
Routines in the TPmoduleo o e 112
Routines in the TRmodule o o o 113
Routines in the TTmodule o e 114
Routines in the TWmodule e 116
Routines in the UTmoduleo o 117
Miscellaneous Utilitiesin MAD i e e 123
ZEBRA Routines Called by MAD 127
GXPLOT Routines called by MAD 137
GKS Routines Called by MAD i 138
EPIO Routines Called by MAD i ettt 138

Miscellaneous CERN Library Routines Called by MAD 139

12

CONTENTS

Part 1

Introduction

Chapter 1. A Short Introduction to ZEBRA

1.1 Why Use ZEBRA?

For various reasons MAD [12] is written in the FORTRAN 77 language. While this language offers
certain advantages, it suffers from its lack of dynamic data structuring facilities. The only data
structures available are arrays of fixed length, and common blocks for shared data. There is no
standard way for allocating arrays dynamically or to change their length at run time.

To overcome this defect, the ZEBRA system [3] has been designed and written at CERN. It
allows the management of large amounts of data in a computer by providing the functions required
to construct a logical graph of the data and their interrelations. The data are stored in FORTRAN
common blocks, called stores. Each store can be subdivided into up to 20 divisions. Relations between
the basic units of data, or banks, are expressed by linking banks to form more complex structures.
A bank is accessed by specifying its address in a given store. Such addresses (called links) are kept
inside the banks or in link areas inside common blocks.

¢ The memory management part of ZEBRA is handled by the MZ package. Utilities are available
for allocating, reorganizing, sorting and deleting banks and data structures.

¢ Individual banks, data structures or complete divisions can be output with the FZ package.

o Direct access files for data structures and the management of the data by keywords are provided
by the RZ package. This part of ZEBRA is presently not used in MAD.

¢ Dumps and verification of ZEBRA structures and documentation tools are available in the DZ
package.

The following sections give a short introduction to the details of ZEBRA which are required for
understanding MAD’s data structure.

1.2 Logical Data Structures

1.2.1 The Bank

Assume that we wish to store the data related to a given object, say an element (magnet) definition,
containing details about its attributes (length, strength, etc.). Using a call to the ZEBRA routine
MZBOOK, we can allocate a contiguous area of storage with a given length. The location of this area is
returned by MZBOOK as a base address which has to be used in any reference to that area. The unit
of storage is called a bank, and in FORTRAN code it will be referenced as in

Q(L+MELEN), Q(L+MEK1Q),

where Q, by convention, is the name of the FORTRAN array underlying the data store, and L is the
base address, provided by MZBOOK. It is the index into the store of the word preceding the first data
word of the bank.

ZEBRA banks may contain data of different types. Thus we can address other data words in the
bank for example as integers:

IQ(L+MBAT), IQ(L+MBSP)

For structuring purposes ZEBRA requires no knowledge of the actual contents of a bank. The internal
details of data in a bank are the responsibility of the user, and it is vital to maintain an adequate
documentation of the bank contents. However, for input and output ZEBRA has to know the type of
the bank contents. For this purpose it uses format codes, explained later.

3

4 CHAPTER 1. A SHORT INTRODUCTION TO ZEBRA

1.2.2 The Linear Structure

The number of element definitions in MAD is variable and may be very large. To realize sets of objects
of the same kind, MAD uses the ZEBRA construct of a linear structure. A linear structure consists
of a series of linked banks, with each bank holding a reserved system word, called the nezt link, i. e.
the base address of the next bank in the set. The next link of the last bank in a linear structure is
zero, indicating that there is no next bank. The address of a linear structure is simply the address of
its first bank.

A linear structure may be visualized as in Figure 1.1. Note that the first bank in the chain has
been booked last.

next next

bank, bank, bank;

Figure 1.1: A Linear Structure containing Element Definitions

The next link is stored in the word LQ(LCELM) of the bank, with the vector LQ displaced by
EQUIVALENCE with respect to the vectors Q and IQ. The elements of the set can then be accessed in
their order by a loop of the form:

LCELM = LFIRST
10 IF (LCELM .NE. 0) THEN

GO TO 10
ENDIF

Banks are connected dynamically at run time. Because each bank has one word set apart to
connect it to the rest of the structure, an arbitrary number of objects can be linked to the set. The
order of the banks in the set may or may not have significance, and the user is allowed to change it if
required.

1.2.3 The General Data Structure

In the general case, more complex structures are needed. Often the address of a bank or of a linear
structure is stored in another bank. It is then called a down link. A given bank may have many down
links, and it can depend on a logically yet higher bank through a down link in that bank. The down
links thus allow to construct a tree, and at each node there may be a single bank or a linear structure.

In MAD, for example, all command keywords form a linear structure that depends on the bank
describing the master keyword KEYWORD. All elements of a given type form a linear structure that
depends on the bank describing the corresponding element keyword; it is shown schematically in
Figure 1.2.

All links described so far are stored by ZEBRA as part of the bank concerned. The down and next
links are referred to collectively as structural links, as they represent the basic connections of the data
structure.

1.2.4 Reverse Links

Each ZEBRA bank contains a link pointing to the bank on which the whole linear structure of which
it is a member depends. This link is called an up link. The value of the up link is zero if the bank is
at the top of the tree structure. The up link is useful for moving towards the root of the tree.

Each bank also has an origin link, which points to the structural link supporting the bank. The
origin link is usually of no interest to the user, its purpose is to free the user from having to remember
the supporting link.

1.3. PHYSICAL STORAGE 5

KEYWORD
down
keys next Key, next key,
down down down
ely n el, n el; el, n el; el, n el;

Figure 1.2: Example of a General Data Structure

The up link and the origin link are known as reverse links . A summary of the four types of links

is given in Figure 1.3.

key,

down origin up up up
origin origin
e].3 e]-2 e]-l
next next

Figure 1.3: Schematic Overview of ZEBRA Links

1.2.5 Reference Links

The links described above are an integral part of the data structure. ZEBRA also permits the program
to establish links between various banks which are not part of the structure, but which may represent
relations between banks. These links are known as reference links. A bank may contain many reference
links, and their use is at the discretion of the user. ZEBRA merely has the task to change their values
in the case that banks are moved in memory for whatever reason.

Reference links, in contrast to the links mentioned so far, may point to any place inside a bank

and not only to its status word (see Figure 1.4).

1.3 Physical Storage

The banks just described must be mapped onto the physical storage of the computer. In MAD a
common block is declared for this purpose by the statements

PARAMETER (MEMMIN = 100 000)
PARAMETER (MEMLEN = 500 000)

COMMON /MEMORY/ FENCE, LQ(MWFLT+*MEMLEN)
SAVE /MEMORY/

INTEGER 1Q (MWFLT*MEMLEN)

REAL FENCE(2), Q(MWFLT*MEMLEN)
DIMENSION DQ (MEMLEN)

EQUIVALENCE (I1Q(1), Q(1), DR(1), LQA9)

EQUIVALENCE (LROOT, LQ(1)), (LLUMP, LQ(2))

6 CHAPTER 1. A SHORT INTRODUCTION TO ZEBRA

It is made known to ZEBRA by calling the routine MZSTOR (Section 35.20). The area FENCE is re-
quired by ZEBRA. It helps detecting out-of-bound indices. We note that the effect of the EQUIVALENCE
statement is to offset the arrays IQ and Q with respect to LQ by eight words. This permits a simple
form of subscripts in the references to data words and to links. The n** data word is addressed as
Q(L+n) or IQ(L+n), and the m** link as LQ(L-m). The first 8 words of the array LQ are reserved for

permanent links. At present only two of them are used as explained later.
Every bank allocated by ZEBRA has the layout shown in Figure 1.4.

LQ(L-NL-NIO-1) I0CB | NL+NIO+12 I/0O control byte, offset of bank centre
LQ(L-NL-NIO) 1/0 option 1
Extra I/O descriptors, 0 < NIO < 16
(Maintained by ZEBRA)
LQ(L-NL-1) I/O option NIO
LQ(L-NL) link NL
Reference links
LQ(L-NS-1) link NS+1
LQ(L-NS) link NS
Structural (down) links
LQ(L-1) link 1
LQ(L) next link Address of next bank in linear structure
LQ(L+1) up link Address of supporting bank
LQ(L+2) origin link Address of supporting link
19(L-5) IDN Numeric bank identifier
I1Q{(L-4) IDH Hollerith bank identifier (4 characters)
1(L-3) NL Total number of links
IQ(L-2) NS Number of structural links
IQ(L-1) ND Number of data words
IQ(L) Status word Status bits: 1-18 user, 19-32 system
IQ(L+1) Data word 1
Data words
LQ(L+ND) Data word ND

Figure 1.4: Layout of a ZEBRA Bank

The central part of the bank starts with the next link, accessed as LQ(L). The up link at LQ(L+1)
points to the bank supporting the linear structure of which the bank is a member. It is zero if the
bank is at the root of the tree. The origin link at LQ(L+2) points to the link through which the bank
is reached. These three links are present in every bank and are not counted in NL and NS.

The two words IQ(L-5) and IQ(L-4) contain the numeric and Hollerith bank identifiers, IDN
and IDH. Usually all banks of a linear structure have the same IDH, but different IDN’s to permit
identification of a particular bank. IDN is assigned by ZEBRA according to given rules, but the user
may freely change it after bank creation. Words IQ(L-3) and IQ(L-2) hold the total number of links

1.3. PHYSICAL STORAGE 7

(NL) and the number of structural links (NS) respectively, and the word IQ(L-1) holds the number of
data words (ND). The status word at IQ(L) provides bits 1 to 18 for user status bits, while bits 19
to 32 are reserved for ZEBRA.

With this format the smallest possible bank (NL=NS=ND=0) occupies 10 words. The store size can
be changed by altering the parameters MEMLEN and MEMMIN, or by selecting one of the Historian®'**
flags BIG or SMALL when compiling MAD. MWFLT is used to double the storage capacity for the version
in double precision.

1.3.1 Divisions

The dynamic store may be physically divided into divisions. When MZSTOR initializes a store, it
automatically creates three divisions, one for ZEBRA, and two for the user. MAD uses division 1
for short-lived data, and division 2 for data which must be kept over longer times. It uses no further
divisions. The dynamic store itself is referred to by the number 0.

1.3.2 Link Areas

The user can store bank addresses or links, for ease of manipulation, in a user-defined area, or link
area. Link areas must be kept in common blocks, and declared to ZEBRA with a call to MZLINK.
ZEBRA will automatically update these links if banks must be moved.

1.3.3 Double Precision Data

There is no certitude that double precision data are properly aligned when stored in banks. If double
precision data must be stored in a bank, they must therefore be moved between the bank and local
double precision variables by calls to UCOPY (Section 36.4), and accessed from the local variables.

1.3.4 Character Data

The FORTRAN standard does not allow equivalencing of character data with numeric data. ZE-
BRA however supports the data type Hollerith. Such data can be moved between a bank and local
CHARACTER variables by calls to UCTOH and UHTOC (Section 36.4), and accessed from the local variables.
There must be enough words reserved in the bank to accommodate the desired number of characters.

1.3.5 Working Space

Often program modules of MAD require temporary working space. MAD uses two methods for this
purpose:

1. Working space is allocated in banks in division 1. This mechanism is used when working space
contains no double-precision data. After execution of the program module the whole division 1
is wiped out by a call to MZWIPE.

2. Working space is allocated in a stack-like fashion using MZWORK. This method is used by modules
requiring double-precision data. The actual working array is the vector DQ, declared as REAL or
DOUBLE PRECISION according to the program version, and equivalenced to IQ. During execution
of the module MAD maintains two indices in the common block

COMMON /WSTACK/ IWORK, NWORK

IWORK is the index into DQ of the last work used for working storage, and NWORK is the index into
DQ of the last word allocated by the latest call to MZWORK. Assuming that a subroutine wants to
allocate an array of length ISIZE, it executes the following code sequence upon entry:

8 CHAPTER 1. A SHORT INTRODUCTION TO ZEBRA

ISAVE = IWORK

ITEMP IWORK

IWORK = IWORK + ISIZE

IF (IWORK .GT. NWORK) THEN
CALL MZWORK(O, DQ(1), DQ(NWORK+1), 0)
NWORK = IWORK

ENDIF

It may then use the area from DQ(ITEMP+1) to DQ(ITEMP+ISIZE) freely. Before exit it executes
the code

IWORK = ISAVE

This does not free the working space for bank allocation, but it makes it available as working
space for other subroutines. When the program module has finished, it executes the sequence

IWORK = 0O
NWORK = 0
CALL MZWORK(O, DQ(1), DQ(1), -1)

to free the whole working space. This method minimizes the number of calls to MZWORK, and
thus the time overhead for managing the working storage.

Since a call to MZWORK also wipes out division 1, the two methods cannot be mixed.

1.4 Dropping Banks and Garbage Collection

Initially the dynamic store contains only a few banks in the system division. As banks are created,
the occupied space increases and the free space decreases. By calling MZDROP the user may drop
banks which are no longer needed. MZDROP logically removes banks, or whole sub-structures, from the
surrounding structure and marks the banks as dropped. The dropped banks remain intact in storage
and reference links pointing to them continue to point to valid information.

If free space is not sufficient to satisfy a further request for creating a bank, ZEBRA will recuperate
the space occupied by dropped banks. This process, called garbage collection, moves all active banks
to form one contiguous area for each division, and updates all links. Links pointing to active banks are
changed to point to the new positions, Any reference link pointing to a dropped bank is reset to zero.
Garbage collection is triggered automatically, but the user may also request it by a call to MZGARB.

For garbage collection to function ZEBRA has to know alllinks used by the program. It is essential
that the user keeps all bank addresses in locations known to ZEBRA, either in the link part of banks,
or in a link area. Link areas are created in common blocks by calls to MZLINK. Any link kept elsewhere
will be obsolete after garbage collection.

Chapter 2. MAD Data Structures

2.1 Conventions

ZEBRA Data Types: For structuring purposes ZEBRA requires no knowledge of the actual con-
tents of a bank. The internal details of data in a bank are the responsibility of the user, and it
is vital to maintain an adequate documentation of the bank contents. However, for input and
output ZEBRA needs to know the type of the bank contents. Some banks in MAD contain data
words which have all the same type. In this case the data type is declared to ZEBRA in the
booking MZB0OX call.

Often the types of data words are declared explicitly on a word by word basis. In this case MAD
declares the bank to be of type 7 (self-defining) and stores format codes along with the data.
These have the form 16 * [+ ¢, where [is the number of words and ¢ is the ZEBRA data type
for the following data. Permissible data type codes are listed in Table 2.1.

Table 2.1: ZEBRA Data Types

0 | unknown data type || 1 | bit string 2 | integer
single precision 4 | double precision || 5 | Hollerith

7 | self-defining

w

Links: Following the ZEBRA conventions all links have names beginning with an L. Links residing in
ZEBRA banks are called LQ. In graphical representations of data structures this manual shows
structural links (supporting links) as solid lines; reference links are shown as dashed lines.
Reverse links are not shown in the figures. Solid boxes represent data banks or parts thereof;
dashed boxes indicate substructures described elsewhere.

Parameters: Many constant integers have been defined in MAD by FORTRAN PARAMETER state-
ments to allow easy change. The names of these parameters all begin with an M. Most parameters
are documented together with the data structures they describe. The following parameters, de-
fined in the comdeck IMPLICIT, are available to all subroutines:

MWFLT

MREAL

MCWRD

MCNAM
MWNAM

Number of ZEBRA words needed to store a real value, it has the value 1 (single
precision) or 2 (double precision).

ZEBRA data type code for a MAD real, it has the value 3 (single precision) or
4 (double precision).

Number of characters that can be stored in a word, it is 8 (single precision) or
4 (double precision).

Number of characters allowed in an identifier (normally 16).

Number of words required to store an identifier (MCNAM/MCWRD).

10 CHAPTER 2. MAD DATA STRUCTURES

2.2 The Root Bank

The entire data structure of MAD forms a single tree in ZEBRA division 2. This allows the complete
data structure to be dumped on disk or reloaded with a single ZEBRA call. The root of the tree is
the root bank. Its address LROOT is stored in common block MEMORY.

The root bank has 20 structural and 20 reference links, but no data words. Links used are listed
in Table 2.2. Parameters defining the root bank structure are set in comdeck STRGROUP. Unused links
are available to program modules of MAD, provided they are freed upon exit.

Table 2.2: Structure of the Root bank

LQ(LROOT-MDKEY)

. }links for the keyword directory (Section 2.9)
LQ(LROOT-MDKEY-3)

LQ(LROOT-MDBNK)

. }links for the data bank directory (Section 2.9)
LQ(LROOT-MDBNK-3)

LQ(LROOT-MDEXP) link for the expression table (Section 2.6.4)
LQ(LROOT-MDVAR) link for the variable reference table (Section 2.6.4)
LQ(LROOT-MRKEY) link for the keyword tree (Section 2.3)
LQ(LROOT-MCSEQ) link for the current beam line expansion (Section 2.10)

‘ ... ‘ central part of the bank ‘

2.3. KEYWORD AND COMMAND TREE 11

2.3 Keyword and Command Tree

The first action of MAD is to build the command keyword KEYWORD, known as the master keyword.
The KEYWORD bank is supported by the link MRKEY in the root bank. While reading the command
dictionary, the master keyword serves as a template. Each new keyword bank built is linked to the
linear structure supported by link 1 of the master keyword bank.

When a command or definition is decoded, it is linked to the linear structure supported by link 1
of the corresponding keyword bank. Definition banks are always kept unless redefined. If a command
bank is labeled or if it belongs to a subroutine, it is kept in store; otherwise it is dropped after
execution.

Some command attributes need additional banks to hold their values. For the 7** attribute such a
bank is linked to the ‘" link of the command bank as described in Section 2.6.1. Command attributes
can take their values from three sources:

1. If the attribute is not entered at all, the so-called first default is used. For values used refer to
Table 2.8.

2. If the attribute name is entered, but without a value, the so-called second default is used. This
value is normally specified in the command dictionary. It is stored in a bank having the same
format as a command bank, supported by link 2 of the keyword bank.

3. If the attribute value is entered by position, or together with its name, the value is used as
entered.

Link 3 of an element definition keyword (e. g. QUADRUPOLE) points to the generic class object of
the same name. This object is built when the keyword is decoded. Note that the up link LQ(L) of a
command or definition bank points to the relevant keyword.

The tree obtained is called keyword tree. A simplified example is depicted in Figure 2.1.

KEYWORD
1
DRIFT QUAD TWISS
11213 112(3 1|2
class class
default default default
D3 D2 D1 QF QD twiss;

expr; €Xpr,

Figure 2.1: Structure of the Keyword Tree

12 CHAPTER 2. MAD DATA STRUCTURES

2.4 Keyword Banks

Keyword banks have the structure shown in Table 2.3. Structure parameters are found in the comdecks
BANKHEAD and KEYGROUP.

Table 2.3: Structure of Keyword Bank
(LCKEY is the address of the keyword bank)

LQ(LCKEY-3) supports the generic class object
(For element definitions only, Section 2.6)
LQ(LCKEY-2) supports the banks containing the second defaults
(Same format as a command bank, Section 2.6)
LQ(LCKEY-1) supports the linear structure of commands or definitions of
this class

... central part of the bank ‘
IQ(LCKEY+MBFRM) format code: 4 integers (4 * 16 + 2)

IQ(LCKEY+MBNAM) directory index in keyword directory (Section 2.9)
IQ(LCKEY+MBPR) process code (Section 2.5)

IQ(LCKEY+MBSP) subprocess code (Section 2.5)

IQ(LCKEY+MBAT) number of keyword attributes NKAT,

counting arrays as a single attribute

IQ(LCKEY+MBAT+1)

. }Keyword attribute groups (Table 2.4)
IQ(LCKEY+MBAT+NKAT*MKSIZ)

2.4.1 Keyword Attributes

The structure of a keyword attribute group is shown in Table 2.4. Structure parameters are defined
in comdeck KEYGROUP.

Table 2.4: Structure of Keyword Attribute Group
(LL=LCKEY+MBAT+(N-1)*MKSIZ points to the word preceding the attribute group)

IQ(LL+MKF1) format code: 4 integers (4 * 16 + 2)
IQ(LL+MKTYPE) attribute type (MAD data type code, Table 2.8)
IQ(LL+MKDIM1) first dimension of attribute

IQ(LL+MKDIM2) second dimension of attribute

IQ(LL+MKDIM3) third dimension of attribute

IQ(LL+MKF2) format code: 1 name (MCNAM*16+5)
IQ(LL+MKNAME) Attribute name (MCNAM words)

IQ(LL+MKSIZ) Next keyword attribute group

2.5. PROCESS AND SUBPROCESS CODES

2.5 Process and Subprocess Codes

The MAD commands are distinguished by two numeric codes, the process code and the subprocess
code. The process code serves as a switch to select a program module, and the subprocess code selects
the action to be performed by the program module. The two codes are defined for each command
in the command dictionary. Table 2.5 summarizes the codes used at time of writing of this manual.

Process code parameters are defined in comdeck PRCGROUP.

Table 2.5: Process and Subprocess Codes

keyword definitions
process | subprocess | keyword process | subprocess | keyword
MPKEY 1 | KEYWORD MPKEY 2 | KEYEDIT
parameter and constant definitions
process | subprocess | keyword process | subprocess | keyword
MPPAR 1 | CONSTANT MPPAR 2 | PARAMETER
element definitions
process | subprocess | keyword process | subprocess | keyword
MPELM 1 | DRIFT MPELM 2 | SBEND
3 | RBEND 4 | MATRIX
5 | QUADRUPOLE 6 | SEXTUPOLE
7 | OCTUPOLE 8 | MULTIPOLE
9 | SOLENOID 10 | RFCAVITY
11 | ELSEPARATOR 12 | SROTATION
13 | YROTATION 14 | HKICKER
15 | KICKER 16 | VKICKER
17 | HMONITOR 18 | MONITOR
19 | VMONITOR 20 | ECOLLIMATOR
21 | RCOLLIMATOR 22 | BEAMBEAM
23 | LUMP 24 | INSTRUMENT
25 | MARKER
beam line and list definitions
process | subprocess | keyword process | subprocess | keyword
MPLIN 1 | LINE MPLIN 2 | SEQUENCE
3 | LIST
subroutines
process | subprocess | keyword process | subprocess | keyword
MPSUB 1| DO MPSUB 2 | ENDDO
3 | STORE 4 | ENDSTORE
5 | SUBROUTINE 6 | ENDSUBROUTINE
7 | CALLSUBROUTINE

(continued on next page)

14

CHAPTER 2. MAD DATA STRUCTURES

Table 2.5: Process and Subprocess Codes (continued)

executable commands

process | subprocess | keyword process | subprocess | keyword
MPSRV 1 | PACKMEMORY MPSRV 2 | OPTION
3 | STOP 4 | SET
5 | VALUE
MPFIL 1 | ARCHIVE MPFIL 2 | RETRIEVE
3 | ASSIGN 4 | CALL
5 | RETURN 6 | EXCITE
7 | INCREMENT 8 | POOLDUMP
9 | POOLLOAD 10 | SAVE
11 | STATUS 12 | SYSTEM
13 | HELP 14 | SHOW
MPENV 1 | BEAM MPENV 2 | BETAO
3 | PRINT 4 | SAVEBETA
5 | TITLE 6 | USE
7 | SELECT 8 | SPLIT
MPPLT 1 | PLOT MPPLT 2 | SETPLOT
MPSUR 1 | SURVEY
MPTWS 1 | TWISS MPTWS 2 | OPTICS
3 | BMPM 4 | IBS
MPMAT 1 | MATCH MPMAT 2 | CELL
3 | ENDMATCH 4 | MIGRAD
5 | SIMPLEX 6 | CONSTRAINT
7 | COUPLE 8 | FIX
9 | LEVEL 10 | VARY
11 | WEIGHT 12 | LMDIF
13 | RMATRIX 14 | TMATRIX
MPTRK 1 | TRACK MPTRK 2 | ENDTRACK
3 | RUN 4 | CONTINUE
5 | START 6 | NOISE
MPHAR 1 | HARMON MPHAR 2 | ENDHARMON
3 | HRESONANCE 4 | HCHROMATICITY
5 | HFUNCTIONS 6 | HTUNE
7 | HVARY 8 | HCELL
9 | HWEIGHT 10 | HLEVEL
MPERR 1 | EALIGN MPERR 2 | EFIELD
3 | EOPTION 4 | EPRINT
5 | ESAVE 6 | EFCOMP
MPCOR 1 | CORRECT MPCOR 2 | GETORBIT
3 | PUTORBIT 4 | GETKICK
5 | PUTKICK 6 | MICADO
MPLIE 1 | DYNAMIC MPLIE 2 | STATIC
3 | NORMAL
MPEDI 1 | SEQEDIT MPEDI INSTALL
3 | MOVE REMOVE
5 | ENDEDIT
MPPOL reserved

2.6. COMMAND BANKS 15

2.6 Command Banks

For each command or definition read, MAD creates a command bank and links it to the corresponding
keyword. Command have the structure shown in Table 2.6. Structure parameters are defined in
comdeck BANKHEAD; MCSIZ is defined in comdeck CMDGROUP.

Table 2.6: Structure of Command Bank
(LCCMD is the address of the command bank)

LQ(LCCMD-NCAT) bank for NCAT!* attribute, if required
LQ(LCCMD-1) bank for 1°¢ attribute, if required
‘ ... ‘ central part of the bank
IQ(LCCMD+MBFRM) format code: 4 integers (4 * 16 + 2)
IQ(LCCMD+MBNAM) directory index for name in data object directory
(Section 2.9)
IQ(LCCMD+MBLN) input line number of last definition
IQ(LCCMD+MBPR) process code (Section 2.5)
IQ(LCCMD+MBSP) subprocess code (Section 2.5)
IQ(LCCMD+MBAT) number of attributes NCAT,
counting each component of an array individually
IQ(LCCMD+MBAT+1)
}Attribute groups (Table 2.7)
IQ(LCCMD+MBAT+NCAT*MCSIZ)

2.6.1 Command Attributes

For each attribute of a command an attribute data group is allocated in the command bank with the
structure shown in Table 2.7. Structure parameters are defined in comdeck CMDGROUP.

Table 2.7: Structure of Command Attribute Group
(LL = LCCMD+MBAT+(N-1)*MCSIZ points to the word preceding the attribute group)

IQ(LL+MCF1) format code: 1 integer (1% 16 + 2)

IQ(LL+MCTYP) data type code: Ten times the MAD data type
(Table 2.8) plus a flag value

IQ(LL+MCF2) format code: MWNAM words
(MWNAM*16+ZEBRA data type)

IQ(LL+MCVAL) data value or empty, depending on data type

MAD defines its own data types listed in Table 2.8. Note that the data type codes are different
from the ZEBRA type codes.

The space reserved in the value part of the attribute group is sufficient to store attribute values of
most types. Some other data types require an additional bank for their value. For each attribute data
group there is a corresponding attribute link, designed to support such a bank. More details about
how attributes are stored can be found by consulting subroutine DCATTR and its subordinates.

2.6.2 Name Attributes

A name attribute value occupies all MWNAM words of the value part as a Hollerith string.

16 CHAPTER 2. MAD DATA STRUCTURES

Table 2.8: MAD Data Types

data type code meaning default value
dictionary | keyword bank | command bank

N 1 10 unspecified name blank
11 known name

1 2 20 unspecified integer value 0
21 integer constant

R 3 30 unspecified real value 0.0
31 real constant
32 real expression

D 4 30 unspecified real value 0.0
31 real constant
32 real expression
33 deferred expression

L 5 50 unspecified logical value false
51 known logical value

S 6 60 unspecified string unspecified
61 known string

B 7 70 unspecified beam line unspecified
71 beam line name
72 beam line name with arguments
73 beam line list

P 8 80 unspecified range reference unspecified
81 known range reference

C 9 90 unspecified constraint unspecified
91 known constraint

A" 10 100 unspecified variable reference unspecified
101 known variable reference

2.6.3 Integer Attributes

An integer attribute is stored in the first word of the value part.

2.6.4 Real Attributes or Deferred Expressions

A real attribute or the value of a deferred expression is stored in the first one or two words of the value
part. If the value is defined as an expression (MAD data type code 32 or 33), the expression is encoded
in postfiz notation, and each operation gives rise to one ezpression group whose structure is shown in
Table 2.9. The encoded expression is stored in an ezpression bank supported by the corresponding
attribute link. The length of each expression group is MXSIZ. Structure parameters are defined in
comdeck EXPGROUP. For each expression group the expression bank has a corresponding structural link
which may support a variable reference bank .

Before a command is executed, expressions of type 32 are evaluated. Expressions of type 33 must
be evaluated before using them by a call to EXEVAL. A call to UTGFLT will also ensure that a new value
is available.

2.6.5 Logical Attributes

A logical attribute is encoded as an integer stored in the first word of the value part. Zero represents
false, one represents true.

2.6. COMMAND BANKS

Table 2.9: Structure of Expression Bank
(LCEXP is the expression bank address,
LL = LCEXP+(N-1)+*MXSIZ points to the word preceding the expression group)

LQ(LCEXP-IQ(LCEXP-2))
. }Variable reference banks (Section 2.6.10)
LQ(LCEXP-1)

‘ central part of the bank

IQ(LL+MXF1) format code: 1 integer (1% 16 + 2)

IQ(LL+MXOP) operation code (Table 2.10)
IQ(LL+MXF2) format code: 1 vale (1*16+MREAL)
IQ(LL+MXVAL) constant value, if needed

Table 2.10: Operation codes in Expression Bank

-4 Load position from beam line sequence. The bank pointer is link 1 of a variable
reference bank supported by the expression bank (section 2.6.10). The bias in the
bank is stored in that same bank.

-2 Load attribute or parameter. The bank pointer is link 1 of a variable reference
bank supported by the expression bank (Section 2.6.10). The attribute number
to be loaded is stored in that same bank.

-1 Load constant value. The value is taken from IQ(LX+LXVAL).

0 Store result. The bank is given by the up link at LQ(LCEXP+1), and the bias in
the bank is stored in IQ(LX+MXVAL).

1 binary plus (X + Y)

2 binary minus (X - Y)

3 multiply (X * Y)

4 divide (X / Y)

5 unary plus (+ X)

6 unary minus (- X)

7 square root (SQRT(X))

8 logarithm (LOG(X))

9 exponential (EXP (X))

10 sine (SIN(X))

11 cosine (COS(X))

12 absolute value (ABS (X))

13 tangent (TAN(X))

14 arc sine (ASIN(X))

15 maximum of two values (MAX(X,Y))

16 minimum of two values (MIN(X,Y))

17 uniform distribution in [0..1] (RANF())

18 gaussian distribution with ¢ = 1 (GAUSS())

19 user-defined random generator (USERO())

20 truncated gaussian (TGAUSS(X))

21 user-defined random generator (USER1 (X))

21 user-defined random generator (USER2(X,Y))

17

18 CHAPTER 2. MAD DATA STRUCTURES

2.6.6 String Attributes

The number of characters is stored in the first word of the value part. The actual string is stored in
a bank supported by the corresponding attribute link.

2.6.7 Beam Line References

If a beam line is referred to by name, the directory index (relative to the data object directory) for
its name is stored in the first word of the value part. If there is an actual argument list, it is encoded
like a beam line definition, and its bank is supported by the corresponding attribute link.

If a beam line reference has the form of a literal list, the list is encoded as a beam line and referred
to like a named line. The format of a beam line reference bank is the same as for a beam line bank
(Section 2.7).

2.6.8 Range References

A range reference requires an extra range reference bank with six integer data words linked to the
attribute link. The meaning of the six integers is summarized in Table 2.11.

Table 2.11: Structure of Range Reference Bank
(LCATTR is the address of the range reference bank)

bias meaning
IQ(LCATTR+1) ICODE1, code for beginning of range:
1: beginning of line (#S)
2: end of line (#E)
3: numeric index of the form #index1
4: name, optionally with occurrence:
(namel or name1[index1])
5: selected elements only (namei1[index1/index2])

IQ(LCATTR+2) Value of index1 for ICODE1 > 3
IQ(LCATTR+3) Directory index for name for ICODE1 > 4
IQ(LCATTR+4) ICODE2, code for end of range:

1: beginning of line (#S)
2: end of line (#E)
3: numeric index of the form #index2
4: name, optionally with occurrence:
(name or name[index])
5: selected elements only (name[index1/index2])
IQ(LCATTR+5) value of index2 for ICODE2 > 3
IQ(LCATTR+6) directory index for name2 for ICODE2 > 4

2.6. COMMAND BANKS 19

2.6.9 Constraints

A constraint requires an extra constraint bank whose structure is show in Table 2.12. The two real
attribute data groups have the same format as a real value. If they contain expressions, the expression
banks are linked to the links 1 or 2 respectively of the constraint bank.

Table 2.12: Structure of Constraint Bank
‘ ... ‘ central part of the bank

IQ(LCATTR+1) code for the type of constraint:

1: minimum specified (> value)

2: maximum specified (< value)

3: minimum and maximum specified

4: equality specified (= value)
IQ(LCATTR+2)
... }real attribute data group for minimum or value
IQ(LCATTR+MCSIZ+1)
IQ(LCATTR+MCSIZ+2)
... }real attribute data group for maximum
IQ(LCATTR+2%MCSIZ+1)

2.6.10 Variable References

A wvariable reference requires an extra variable reference bank. Its structure is shown in Table 2.13.
Structure parameters are defined in comdeck VARGROUP.

Table 2.13: Structure of Variable Reference Bank
(LCVAR is the address of the variable reference bank)

‘ LQ(LCVAR-1) ‘ reference link, points to bank referred to ‘
‘ - ‘ central part of the bank ‘
IQ(LCVAR+MVF1) format code: 2 names (2¥MWNAM*16+5)
IQ(LCVAR+MVBANK) name of bank in which attribute resides
IQ(LCVAR+MVATTR) name of attribute referred to
IQ(LCVAR+MVF2) format code: 5 integers (5%16+2)
IQ(LCVAR+MVSEEN) type of reference: 1=parameter, 2=attribute
IQ(LCVAR+MVIND1) first index
IQ(LCVAR+MVIND2) second index }for dimensioned attributes
IQ(LCVAR+MVIND3) third index
IQ(LCVAR+MVBIAS) bias of attribute in its bank

20 CHAPTER 2. MAD DATA STRUCTURES

2.7 Beam Line Banks

Beam lines and replacement lists are stored as doubly linked lists. The structure of a beam line bank
is shown in Table 2.14.

The structure of the list cells is represented in Table 2.15. The pointers “last”, “first”, “next”,
“previous”, and “sublist head” contain the bias in the beam line bank of the list cell referred to. This
avoids to declare them as links, and to give ZEBRA the burden of updating them when banks are
moved. The field “dir. index” refers to a position in the data object directory. The field “repeat”
contains the repeat count, as defined in the beam line or replacement list definition (one, if not
specified).

The stack pointers and the stack area in list cells are used during expansion of a beam line by
subroutine LNXPND. They are of no concern to the program user.

Table 2.14: Structure of Beam Line List
(LCCMD is the address of the beam line list bank)

LQ(LCCMD-3)
}stack pointers used during expansion of the beam line
LQ(LCCMD-2)

LQ(LCCMD-1) formal parameter bank (MWNAM words per name)
‘ - ‘ central part of the bank ‘

IQ(LCCMD+MBFRM) format code: 4 integers (4 * 16 + 2)

IQ(LCCMD+MBNAM) directory index for beam line name

IQ(LCCMD+MBPR) process code MPLIN (Section 2.5)

IQ(LCCMD+MBSP) subprocess code (Section 2.5)

IQ(LCCMD+MBAT) number of attributes NCAT = 0

IQ(LCCMD+MLFM) format code: Rest of bank is integer (2)

IQ(LCCMD+MLHD) offset in this bank of list header:
IQ(LCCMD+IQ(LCCMD+MLHD))

IQ(LCCMD+MLF1) LINE: bias of first dummy list for formals:

first formal begins at IQ(LCCMD+IQ(LCCMD+MLF1))
LIST: stack area used during line expansion
IQ(LCCMD+MLF2) LINE: bias of last dummy list for formals:

last formal begins at IQ(LCCMD+IQ(LCCMD+MLF2))
LIST: stack area used during line expansion
IQ(LCCMD+MLF2+1)

}list cells (6 words each, Table 2.15)
IQ(LCCMD+IQ(LCCMD-1))

2.8. BEAM SEQUENCES 21

Table 2.15: Beam Line List Cells

cell usage cell contents
MLTYP | MLPRV MLNXT | MLREF ‘ MLREP ‘ MLACT
Header of main list, or header | 1 last first stack area

of actual arguments list.

Header of a sublist or of a | 2 last first stack area
dummy list replaced by name

Header of a dummy list re- | 3 last first stack area
placed by a sublist.

Cell refers to a sublist of the | 4 previous | next sublist head | repeat | unused
same beam line.

Cell refers to a sublist of an- | 5 previous | next sublist head | repeat | unused
other beam line, that is to
an actual argument which is a
sublist.

Cell refers to a name without | 6 previous | next dir. index repeat | unused
actual arguments.

Cell refers to a name with ac- | 7 previous | next dir. index repeat | actual
tual arguments.

2.8 Beam Sequences

For space reasons, a SEQUENCE has a somewhat special structure. It consists of two banks. The first
bank contains the positions and has the structure shown in Table 2.16. The second bank contains the
directory indices and has the structure shown in Table 2.17.

Walking through the members of the sequence implies a loop for I = 2...N. The directory
index for the member is then found at IQ(L2+I), while the position value is stored in position
IQ(L1+MBAT+(I-2)*MWFLT+2). If there is an expression bank for the position, it is linked to link
LQ(L1-I).

2.9 Directories

2.9.1 Directory Structures

MAD uses two directories to keep track of names. Each directory consists of four banks, supported
by four links in the root bank. The two directories serve the following purposes:

keyword directory: Holds all keyword definitions. The four banks of the keyword directory are
supported by the links MDKEY through MDKEY+3 in the root bank. For accessing the keyword
directory an array of reference links LDKEY is provided in common REFER (Section 3.1).

data object directory: Holds all data object definitions. The four banks for the data object di-
rectory are supported by the links MDBNK through MDBNK+3 in the root bank. For accessing the
keyword directory an array of reference links LDBNK is provided in common REFER (Section 3.1).

The two arrays LDKEY and LDBNK may be thought of as directory handles for easy access to the two
directories. The four banks of a directory have the following functions:

index bank: This bank has no links. Its data part contains an ordering vector (one word per entry)
permitting access to names in alphabetical order and binary search.

22 CHAPTER 2. MAD DATA STRUCTURES

name bank: This bank has no links. Its data part contains a 16-character object name per entry.
This requires two or four words per entry for the single precision and double precision version
of MAD respectively.

bank pointers: This bank has one reference link per entry, pointing to the data structure containing
the defined object. If an object has been referred to, but not defined, the corresponding link is
zero. The single data word contains the number of used entries.

occurrence count bank: This bank has no links. The data part has one word per entry used during
beam line expansion to keep track of occurrence counts for sublines and beam elements.

The structure of a directory can be depicted as in Figure 2.2.

LDKEY(1)------ » index bank «—T1.Q(LROOT-MDKEY)
LDKEY(2)------ - name bank «—LQ(LROOT-MDKEY-1)
LDKEY(3)------ > pointer bank «——TLQ(LROOT-MDKEY-2)
; ;
keyword bank keyword bank
LDKEY (4)------ > occurrence count bank «—LQ(LROOT-MDKEY-3)

Figure 2.2: Structure of Keyword Directory

When MAD sees a new name, it creates a new directory entry . It assigns it a fixed directory indez,
namely the next free position in the name, pointer, and occurrence count bank of the directory. All
later references to the same name use this index. This makes later redefinition easy by simply replacing
the bank pointer. The index bank is updated to permit addressing the name bank in alphabetical
order.

2.10 Beam Line Expansions

For each reference to a beam line or sequence, MAD creates a tree describing the beam line’s expansion.
If the reference occurs in a USE command, its topmost bank is supported by link MCSEQ of the root
bank. For faster access this link is duplicated in LCSEQ, stored in common block REFER. When a LINE
attribute occurs in a MATCH or TWISS command, this beam line expansion is only required as long as
the program module is active. Its supporting link becomes local to a link area of the relevant program
module.

The structure of a beam line expansion is shown in Table 2.19 and Figure 2.3. Structure parameters
are defined in comdeck SEQGROUP. The various banks all contain an entry for each position in the
machine, i. e. for each physical element and for the entrance and exit of each beam line.

2.10.1 Flag Words

The format of the flag words is given in Table 2.18, and its parameters are defined in comdeck SEQFLAG.
Packing and unpacking may be done using the CERN program library routines SBITO, SBIT1, SBYT,
JBIT and JBYT (Chapter 34).

2.10. BEAM LINE EXPANSIONS

23

Table 2.16: Structure of the First Bank of a Beam Line Sequence
(L1 is the address of the first sequence bank)

LQ(L1-NEL1EM)

LQ(L1-2)

}pointers to any expression banks for positions

LQ(L1-1) pointer to the second bank for the SEQUENCE
‘ - ‘ central part of the bank
IQ(L1+MBFRM) format code: 4 integers (4 * 16 + 2)
IQ(L1+MBNAM) directory index for sequence name
IQ(L1+MBPR) process code MPLIN (Section 2.5)
IQ(L1+MBSP) subprocess code (Section 2.5)
IQ(L1+MBAT) number of attributes NCAT = 1
IQ(L1+MBAT+1)
... }attribute group for REFER
IQ(L1+MBAT+MCSIZ)
IQ(L1+MBAT+MCSIZ+1) format code: rest of bank is real
IQ(L1+MBAT+MCSIZ+2)

IQ(L1+MBAT+MCSIZ+N*MWFLT+1)

}Positions (N — 1 real values)

free space

Table 2.17: Structure of the Second Bank of a Beam Line Sequence
(L2 is the address of the second sequence bank)

‘ central part of the bank

IQ(L2+1)
IQ(L2+2)

IQ(L2+N)

Number of members plus 1

}N — 1 directory indices

free space

Table 2.18: Flag Words in Beam Line Expansions

bit position(s)

meaning

1: exit of a physical element

1...MCODE 2: beginning of a beam line

3: end of a beam line
MFRST dump flag for subroutine TMFRST
MLUMP dump flag for subroutine LMLUMP
MREFE dump flag for subroutine TMREFE
MSCND dump flag for subroutine TMSCND
MOPTC output flag for OPTICS
MPRNT print flag for TWISS or SURVEY
MTRAK print flag for TRACK

MOCC1...MOCC2

occurrence counter for the element or line in this position

24

Table 2.19:

CHAPTER 2. MAD DATA STRUCTURES

Structure of Beam Line Expansion

(LCSEQ is the address of the expansion for the main beam line)

LQ(LCSEQ-MSELM)

Reference link: list of quadrupoles and sextupoles affecting
dispersion in the beam line (Section 2.10.3). In each bank
reference link 1 points to the next item.

LQ(LCSEQ-MSMON)

Reference link: list of monitors in the beam line (Sec-
tion 2.10.3). In each bank reference link 1 points to the
next item.

LQ(LCSEQ-MSCOR)

Reference link: list of orbit correctors in the beam line (Sec-
tion 2.10.3). In each bank reference link 1 points to the next
item.

LQ(LCSEQ-MSLIE)

This link supports a linear structure with Lie-algebraic
maps for the line, one bank for each map order used. See
subroutine LMLUMP for the bank format.

LQ(LCSEQ-MSMAP)

This link supports a linear structure with TRANSPORT
maps for the line, one bank for each value of §p/p used.
See subroutine TMTURN for the bank format.

LQ(LCSEQ-MSCOM)

The bank supported by this link holds the supporting links
for the banks in the lists pointed at by the links MSELMN,
MSMON, MSMON. (Section 2.10.3).

LQ(LCSEQ-MSNUM)

The bank supported by this link contains the number of
physical elements preceding the position.

LQ(LCSEQ-MSFLD)

This link supports a bank supporting the field error banks
for all positions which have errors (Section 2.10.2).

LQ(LCSEQ-MSALI)

This link supports a bank supporting the alignment error
banks for all positions which have errors (Section 2.10.2).

LQ(LCSEQ-MSFLG)

This link supports a bank containing a flag word for each
position (Table 2.18).

LQ(LCSEQ-MSDIR)

This link supports a bank containing the directory indices
(relative to the data object directory) for the element or
beam line of each position.

central part of the bank

IQ(LCSEQ+MSF1)
IQ(LCSEQ+MSR1)
IQ(LCSEQ+MSR2)
IQ(LCSEQ+MSYM)
IQ(LCSEQ+MSUP)
IQ(LCSEQ+MSF2)
IQ(LCSEQ+MSBN)
IQ(LCSEQ+MSRN)

format code: 4 integers (4 * 16 + 2)

first position in range

last position in range

symmetry code

number of superperiods

format code: Hollerith follows (0 * 16 + 5)
name of beam line (MCNAM words)
encoded range name (MCRNG words)

2.10. BEAM LINE EXPANSIONS 25

LQ(LCSEQ-MSELM) [f------------- -{ }—{ ‘ quadrupoles/sextupoles
LQ(LCSEQ-MSMON) | f-------- . - | monitor readings
LQ(LCSEQ-MSCOR) | f----mmmmmmme . - | corrector strengths
1.Q(LCSEQ-MSCOM) | orbit correction |

LQ(LCSEQ-MSLIE) ———[|] Lie algebraic maps

LQ(LCSEQ-MSMAP) ——{ |——{ | TRANSPORT maps

LQ(LCSEQ-MSNUM) 4{ element numbers }< LSNUM
LQ(LCSEQ-MSFLD) e field errors [+~ LSFLD
.
LQ(LCSEQ-MSALI) | alignment errors |+---- LSALI
= .
LQ(LCSEQ-MSFLG) - position flags |-~ LSFLG
LQ(LCSEQ-MSDIR) | directory indices |+---- LSDIR

central part of the bank

IQ(LCSEQ+MSF1) format code: 4 integers follow
IQ(LCSEQ+MSR1) first position in range

IQ(LCSEQ+MSR2) last position in range

IQ(LCSEQ+MSYM) 0: no symmetry, 1: symmetry
IQ(LCSEQ+MSUP) number of superperiods
IQ(LCSEQ+MSF2) format code: Hollerith follows
IQ(LCSEQ+MSBN) line name (MCNAM characters)
IQ(LCSEQ+MSRN) encoded range name (MCRNG characters)

Figure 2.3: Structure of Beam Line Expansion

26 CHAPTER 2. MAD DATA STRUCTURES

2.10.2 Machine Imperfections

If any misalignment errors exist in the working beam line, a pointer bank is linked to the link at
LSALI). The misalignment errors for an element at position n are stored in a misalignment bank
supported by link n in this pointer bank. The misalignment error bank contains six or ten real or
double-precision values in the following order:

1. Horizontal displacement (DX),

2. Vertical displacement (DY),

3. Longitudinal displacement (DS),

4. Rotation angle about y-axis (DTHETA),

5. Rotation angle about z-axis (DPHI),

6. Rotation angle about s-axis (DPSI),

7. Horizontal orbit error (MREX, for monitors only),

8. Vertical orbit error (MREY, for monitors only).

9. Horizontal dispersion error (MREDX, for monitors only),
10. Vertical dispersion error (MREDY, for monitors only).

Whole beam lines may also be misaligned, and the errors are linked to their entrance. To facilitate
handling the error banks are duplicated for the exit.

Field errors are stored as absolute errors, even when entered as relative values. The field error
bank for an element in position n is linked to link n of the pointer bank at LSFLD. Lines or lumps
may not have field errors. The field error banks contain pairs of real or double precision values in
ascending multipole order, beginning at 0 with no gaps. The first value of each pair is the integrated
normal multipole, and the second the integrated skew multipole. The following elements may have
field errors:

Dipole: stores and uses dipole through octupole components.
Orbit Corrector: stores and uses dipole component only.
Quadrupole: stores dipole and quadrupole, uses quadrupole only.
Sextupole: stores dipole through sextupole, uses sextupole only.
Octupole: stores dipole through octupole, uses octupole only.

Thin Multipole: truncates at order MAXMUL, stores all orders from zero to the highest non-zero
component, uses all stored error components.

2.10.3 Element, Corrector and Monitor Tables

The orbit correction module “CQO” requires space to store lattice functions, kicks, quadrupole and
sextupole strengths, and orbit readings. For this purpose it sets up three lists, pointed at by reference
links LQ(LCSEQ-MSELM), LQ(LCSEQ-MSCOR), and LQ(LCSEQ-MSMON) respectively. The structural links
to the banks in these lists are stored in a bank at LQ(LCSEQ-MSCOM), and the “next” links is stored
in each bank in reference link 1. Walking through one of these structures enables reference to all
correctors or all monitors in order of occurrence, e. g. for printing purposes.

Each bank in these lists contains the following real or double precision values:

2.11. BANK STATUS BITS 27

1. Horizontal kick (corrector) or orbit reading (monitor),
2. Vertical kick (corrector) or monitor reading (monitor),
3. Horizontal dispersion reading (monitor),
4. Vertical dispersion reading (monitor),
5. Longitudinal position s,
6. Horizontal 3,,
7. Vertical 3,,
8. Horizontal phase y,,
9. Vertical phase p,,
10. Quadrupole strength (quadrupole) or sextupole strength times dispersion (sextupole).

The corrector and monitor banks are eacg marked with the six status bits listed in table 2.20

Table 2.20: Status bits in Corrector and Monitor Banks
Correctors:

Corrector has horizontal action

Corrector has vertical action

Corrector has been set by MICADO for horizontal correction
Corrector has been set by MICADO for vertical correction
Corrector is activated for horizontal correction

Corrector is activated for vertical correction

SO W N

Monitors:

Monitor reads horizontal plane

Monitor reads vertical plane

Monitor is valid for horizontal orbit reading
Monitor is valid for vertical orbit reading
Monitor is valid for horizontal dispersion reading
Monitor is valid for vertical dispersion reading

SO W N

2.11 Bank Status Bits

ZEBRA uses a the upper 14 bits of the status word of each bank for status information. The lower
18 bits are available for the user program. MAD uses eight of these bits to keep track of events. The
definitions for these bits can be found in comdeck MARKBITS:

MXDRP Drop bit (Section 4.6),
MXORD Order bit (Section 12.7),
MXDEF Defer bit (Section 12.7),
MXCLS Class bit (Section 18),
MXALS Alias bit (Section 18),

MXLMP Recursion bit (Section 4.9),

28 CHAPTER 2. MAD DATA STRUCTURES

MXKNW Known bit (Section 4.9),

MXMOD Modify bit (Section 4.9).

Chapter 3. Global Common Blocks

3.1 Common Block /REFER/

MAD keeps the most used ZEBRA reference links in a common block REFER:
COMMON /REFER/ LREF1,

+ LCALI, LCATT, LCCLS, LCCMD, LCCOM, LCDEF, LCELM,
+ LCEXP, LCFLD, LCKEY, LCSEQ, LCSPL, LCSRC, LCVAR,
+ LDBNK(4), LDKEY(4),
+ LSALI, LSCOM, LSDIR, LSFLD, LSFLG, LSNUM, LSSPL,
+ LREF2
SAVE /REFER/

There are service routines to fill these reference links, and the ZEBRA system keeps them normally

up to date.

LCALI Misalignments for the current element (Section 2.10.2).

LCATT Current attribute bank.

LCCLS Current class bank.

LCCMD Current command or element being decoded.

LCCOM Current corrector or monitor bank.

LCDEF Current default values bank.

LCELM Current beam element during optics or tracking calculation.

LCEXP Current expression bank.

LCFLD Field errors for the current element (Section 2.10.2).

LCKEY Keyword for current command.

LCSEQ Current main beam line sequence.

LCSPL Current split pointer.

LCSRC Current source bank for copy or defaults.

LCVAR Current variable reference bank.

LDBNK (4) Data object directory (see Section 2.9).

LDKEY (4) Keyword directory (see Section 2.9).

LSALI Bank for misalignment pointer sequence.
LSCOM Bank for corrector and monitor table.
LSDIR Bank for directory index sequence.
LSFLD Bank for field error pointer sequence.
LSFLG Bank for position flag sequence.

LSNUM Bank for occurrence numbers.

LSSPL Bank holding split pointers.

29

30 CHAPTER 3. GLOBAL COMMON BLOCKS

3.2 Common block BEAM and BEAM bank

When MAD sees a BEAM command, it builds a special command bank with the name BEAM to hold the
information read on the BEAM command. This command bank holds also any information about the
circulating beam which has been computed by the program. For faster access the beam description is
duplicated in comdeck BEAM:

COMMON /BEANAM/ PRTNAM

COMMON /BEAFLT/ AMASS, CHARGE, ENERGY, PC, GAMMA,

+ EX, EXN, EY, EYN, ET, SIGT, SIGE,
BUNCH, PARNUM, CURRNT, SIGX, SIGY,
FREQO, BETA, UO, ARAD, PDAMP(3)

COMMON /BEAINT/ IETFLG, IPNFLG

COMMON /BEALOG/ FBCH, FRAD

SAVE /BEANAM/, /BEAFLT/, /BEAINT/, /BEALOG/

LOGICAL FBCH, FRAD

CHARACTER* (MCNAM) PRTNAM

Here are the data entered with the BEAM command:

PRTNAM Name of the beam particles in character format,
AMASS Mass of the beam particles in GeV/c?,

CHARGE Charge of the beam particles in elementary charges,
ENERGY Nominal energy of a beam particle in GeV,

PC Nominal momentum of a beam particle in GeV/¢,
GAMMA Relativistic parameter v = E /my,

EX Horizontal emittance (Courant-Snyder invariant) in m,
EXN Normalized horizontal emittance E,, = 487 E,,

EY Vertical emittance (Courant-Snyder invariant) in m,
EYN Normalized vertical emittance E,, = 437E,,

ET Longitudinal emittance F; = co;0g,

SIGT Bunch length co,

SIGE Energy spread og,

BUNCH Number of bunches,

PARNUM Number of particles per bunch,

CURRNT Bunch current in A,

FBCH If .TRUE., the beam is bunched.

FRAD If .TRUE., synchrotron radiation is considered.

The following values are computed and stored by MAD:

FREQO The revolution frequency in MHz.

3.3. KEYWORD DATA 31

SIGX Horizontal beam size o,

SIGY Vertical beam size o,

BETA Relativistic parameter 3 = v/c,

Uo Synchrotron radiation loss per turn in GeV,

ARAD Classical particle radius (electron radius for electrons),

PDAMP (3) Damping partition numbers.

IETFLG Tells which value was given to specify the longitudinal emittance:
None given,

ET given,

SIGT given,

: SIGE given.

LN = O

IPNFLG Tells which value was given to specify the number of particles:

0: None given,
1: BCURRENT given,
2: NPART given,

Before each command executed, MAD calls subroutine ENGET (Section 10.3) to copy the contents of
the BEAM bank into this block.

To store something into the beam bank, one has to store the information in the BEAM common,
and then to call ENPUT (Section 10.4) to copy the data to the BEAM bank.

3.3 Keyword Data

Simple access to the contents of a keyword definition is possible by using the comdeck KEYWORD:

PARAMETER (MAXAT = 100)

COMMON /KEYWDI/ IATYPE(MAXAT),IADIM1(MAXAT),TIADIM2(MAXAT) ,IADIM3(MAXAT)
COMMON /KEYWDC/ KATNAM(MAXAT)

SAVE /KEYWDI/, /KEYWDC/

CHARACTER* (MCNAM) KATNAM

It can be loaded from a keyword bank by calling KWGET (Section 15.2). The variables used above have
the following meaning:

MAXAT A parameter defining the maximum number of arguments, counting arrays for one
argument.

IATYPE(i) The MAD data type for the i** attribute.
TADIM1(i) The first dimension for the i* attribute.
TADIM2(i) The second dimension for the ** attribute.
IADIM3(i)

KATNAM(i) The name of the it* attribute.

32 CHAPTER 3. GLOBAL COMMON BLOCKS

3.4 TRANSPORT Map for Current Element

The subroutine TMMAP (Section 28.5) returns the TRANSPORT map for an element in the common
block MAPELM:

COMMON /MAPELM/ RE(6,6), TE(6,6,6)
SAVE /MAPELM/

with the arrays

RE the first-order transfer matrix for the element.

TE The second-order terms of the TRANSPORT map.

3.5 TRANSPORT Map for one Turn

TMREFE (Section 28.7), TMFRST (Section 28.3), and TMSCND (Section 28.9) return the linear transfer
matrix or the TRANSPORT map for one turn in the common block MAPTRN:

COMMON /MAPTRN/ RT(6,6), TT(6,6,6), RTP(6,6)
SAVE /MAPTRN/

with the arrays

RT the first-order transfer matrix for one turn.
TT The second-order terms of the TRANSPORT map for one turn (not for TMREFE).
RTP Some routines of the Twiss module use this array to store the first derivative of the

linear transfer matrix with respect to the relative energy error.

3.6 Lattice Functions for Beginning of Line

The initial values for the lattice functions are kept in the common block OPTICO:

COMMON /OPTICO/ BETXO, ALFXO, AMUXO, BETYO, ALFYO, AMUYO,
ORBITO(6), DISPO(6),

+ WX0, PHIXO, DMUXO, WYO, PHIYO, DMUYO,
+ DDISPO(6), CIRC, ROMAT(2,2)
SAVE /0PTICO/

It contains the variables

BETXO0 B, or, for coupled machines, 3.
ALFXO a, or, for coupled machines, a;.
AMUXO i or, for coupled machines, p;.
BETYO By or, for coupled machines, 3,.
ALFYO ay or, for coupled machines, a,.

AMUYO fty or, for coupled machines, p,.

ORBITO(6) closed orbit position (2, p,, y, py, ct, 6E/po).

3.7. LATTICE FUNCTIONS FOR CURRENT POSITION 33

DISPO(6) dispersion vector, i.e. derivative of closed orbit with respect to the relative energy error.
WXO0 The chromatic amplitude W,.

PHIXO The chromatic phase &.

DMUXO The derivative of u, with respect to the relative energy error.

WYO The chromatic amplitude W,.

PHIYO The chromatic phase &,.

DMUYO The derivative of u, with respect to the relative energy error.

DDISPO(6) The second derivative of the closed orbit vector with respect to the relative energy
error.

CIRC The machine circumference.

ROMAT(2,2) The coupling matrix, defined as Rtan ¢ in the formalism by L. C. Teng [17].

3.7 Lattice Functions for Current Position

The values of the lattice functions are stored in common block OPTIC1, which is organized in the same
way as OPTICO:

COMMON /OPTIC1/ BETX, ALFX, AMUX, BETY, ALFY, AMUY,

+ ORBIT(6), DISP(6),

+ WX, PHIX, DMUX, WY, PHIY, DMUY,
DDISP(6), SUML, RMAT(2,2)

SAVE /O0PTIC1/

It contains the variables

BETX B, or, for coupled machines, 3.
ALFX a, or, for coupled machines, a;.
AMUX i or, for coupled machines, p;.
BETY By or, for coupled machines, 3,.
ALFY ay or, for coupled machines, a,.
AMUY fty or, for coupled machines, p,.

ORBIT(6) closed orbit position (2, p,, y, py, ct, 6E/po).

DISP(6) dispersion vector, i.e. derivative of closed orbit with respect to the relative energy error.
WX The chromatic amplitude W,.

PHIX The chromatic phase &.

DMUX The derivative of u, with respect to the relative energy error.

WY The chromatic amplitude W,.

PHIY The chromatic phase &,.

34

DMUY

DDISP(6)

SUML

RMAT(2,2)

CHAPTER 3. GLOBAL COMMON BLOCKS

The derivative of u, with respect to the relative energy error.

The second derivative of the closed orbit vector with respect to the relative energy

€ITor.

The length accumulated at the current position.

The coupling matrix, defined as Rtan ¢ in the formalism by L. C. Teng [17].

3.8 Option Flags

Execution of MAD is controlled by flags which may be set by the user. These flags are set by the
OPTION command and reside in the common block OPTION:

COFACT

ICMDFL

IDEFFL

IEXPFL

IKEYFL

ILINFL

DEBUG

DOUBLE

ECHO

INTER

COMMON /OPTFLT/
EQUIVALENCE
COMMON /OPTINT/
INTEGER
INTEGER
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
COMMON /OPTLOG/
LOGICAL

LOGICAL

LOGICAL

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

OPTFLT(10)

(COFACT, OPTFLT(1))

OPTINT(10)
OPTINT

ICMDFL, IDEFFL,

IEXPFL, IKEYFL, ILINFL

(ICMDFL, OPTINT(1)), (IDEFFL, OPTINT(2))
(IEXPFL, OPTINT(3)), (IKEYFL, OPTINT(4))
(ILINFL, OPTINT(5))

OPTFLG(20), OPTCON(5)

OPTFLG, OPTCON

DEBUG, DOUBLE, ECHO, INTER, TRACE, VERIFY,
WARN, INFO, SYMPL

RESET, TELL

(DEBUG, OPTFLG(1)), (DOUBLE, OPTFLG(2))
(ECHO, OPTFLG(3)), (INTER, OPTFLG(4))
(TRACE, OPTFLG(5)), (VERIFY, OPTFLG(6))
(WARN, OPTFLG(7)), (INFO, OPTFLG(8))
(SYMPL, OPTFLG(9))

(RESET, OPTCON(1)), (TELL, OPTCON(2))

A real value used to limit the corrections at each iteration in closed orbit search.

Dump all new commands.

Dump all new elements and parameters.

Dump all new expressions, and evaluated ones.

Dump all new keywords.

Dump all new lines.

True implies printing of messages for marking and dropping modified banks.

If true, TFS tables are created in double precision.

True, to print input echo.

True, if MAD runs in interactive mode.

3.9. PHYSICAL CONSTANTS 35

TRACE True, to print messages for command begin and end. The message includes information
about timing.

VERIFY True implies VERIFY option.

WARN If true, warning messages are printed.

INFO If true, information messages are printed.

SYMPL True forces symplectification of transfer matrices.

RESET True implies rest of all options to their defaults in the (OPTION command).
TELL True implies printing of all options in the OPTION command.

The values of the 5 integer flags mean:
0: No dump.
1: Dump in “readable” format.
2: Dump in ZEBRA format.

3: Dump in both formats.

3.9 Physical Constants

Many useful physical constants are available in comdeck PHYSICPM: CLIGHT AMUO EPSO HBAR QELECT
FALFA EMASS ERAD ELAMDA ASUBE PMASS PRAD PLAMDA ASUBP

*---- Universal physical constants.

* Velocity of light [m/s]:
PARAMETER (CLIGHT = 2.997 924 58 D+08)

* Permeability of vacuum [V*s/A*m]:
PARAMETER (AMUO = 1.256 637 061D-06)

* Permittivity of vacuum [A*S/V*m]:
PARAMETER (EPSO = 8.854 187 817D-12)

* Reduced Planck’s constant [GeVxs]:

PARAMETER (HBAR = 6.582 122 0 D-25)

*---- Electromagnetic constants.
* Elementary charge [Axs]:

PARAMETER (QELECT = 1.602 177 33 D-19)
* Fine structure constant [1]:

PARAMETER (FALFA = 7.297 353 08 D-03)

*---- Electron.
* Rest mass [GeV]:

PARAMETER (EMASS = 0.510 999 06 D-03)
* Classical radius [m]:

PARAMETER (ERAD = 2.817 940 92 D-15)
* Reduced Compton wavelength [m]:

PARAMETER (ELAMDA = 3.861 593 23 D-13)
* Magnetic moment anomaly [1]:

36 CHAPTER 3. GLOBAL COMMON BLOCKS

PARAMETER (ASUBE = 1.159 652 193D-03)

*---- Proton.
* Rest mass [GeV]:
PARAMETER (PMASS = 0.938 272 31 D+00)
* Classical radius [m]:
PARAMETER (PRAD = 1.534 698 57 D-18)
* Reduced Compton wavelength [m]:
PARAMETER (PLAMDA = 2.103 089 37 D-16)
* Magnetic moment anomaly [1]:

PARAMETER (ASUBP = 1.792 847 386D+00)
The value of 7 is available in comdeck PI:

PARAMETER (PI = 3.1415926535898D0)

3.10 Data for Main Working Beam Line

Most program modules require a working beam line to be set. For simple access they may copy the
most important data for this line into a set of common blocks by calling UTBEAM (Section 33.1). The
comdeck RANGE defines these common blocks as:

COMMON /RNGCHR/ LINNAM, RNGNAM
CHARACTER LINNAM+(MCNAM), RNGNAM* (MCRNG)
COMMON /RNGINT/ IRG1, IRG2, NSUP

COMMON /RNGLOG/ SYMM

LOGICAL SYMM

SAVE /RNGCHR/, /RNGINT/, /RNGLOG/

with the variables:

LINNAM The name of the main working beam line.

RNGNAM A character string encoding the current range set by a USE command.
IRG1 The index into the working beam line for the beginning of the range.
IRG2 The index into the working beam line for the end of the range.

NSUP Number of superperiods.

SYMM The symmetry flag.

3.11 Status Flags

The status flags are set by the program in response to certain situations to help in deciding how to
deal with computations. They are held in common block STATUS:

COMMON /STATUS/ ERROR, SCAN, NWARN, NFAIL, IMODUL, IPLFLG,

+ INVAL, MAYCPL, STABX, STABY, STABT,
NEWCOR, NEWMAP, PROMPT
SAVE /STATUS/
LOGICAL ERROR, SCAN,
+ INVAL, MAYCPL, STABX, STABY, STABT,

NEWCOR, NEWMAP, PROMPT

3.11. STATUS FLAGS 37

ERROR Fatal error in current command.

SCAN Scanning mode.

NWARN Warning message count.

NFAIL Fatal error message count.

IMODUL Process code for the current module (for HARMON, MATCH, TRACK, SEQEDIT, etc.).
IPLFLG Zero, if no plot has been generated, set to one by first plot.

INVAL Optics computed with initial values.

MAYCPL Coupling effects found.

STABX First mode is stable (usually horizontal).

STABY Second mode is stable (usually vertical).

STABT Third mode is stable (usually longitudinal).

NEWCOR Optical functions in table of correctors and monitors should be recomputed.
NEWMAP Precomputed maps should be dropped.

PROMPT Print prompt ¢ ‘M: ==>’’ before reading an input line.

A second common block contains flags which control program actions. Several commands in MAD
are not able to deal with all situations. The control flags are set according to the data before each
command; those command routines may change the settings within certain limits.

PARAMETER (MAXCPF = 10, MAXDOF = 10)

COMMON /STFLAG/ CPFLAG(MAXCPF), DOFLAG(MAXDOF)

LOGICAL CPFLAG, CPLXY, CPLXT

LOGICAL DOFLAG, DOCAV, DORAD, DOALI, DOFLD, DOKICK
SAVE /STFLAG/

EQUIVALENCE (CPLXY, CPFLAG(1)), (CPLXT, CPFLAG(2))
EQUIVALENCE (DOCAV, DOFLAG(1)), (DORAD, DOFLAG(2))
EQUIVALENCE (DOALI, DOFLAG(3)), (DOFLD, DOFLAG(4))
EQUIVALENCE (DOKICK, DOFLAG(5))

The meaning of the flags is:

CPLXY If true, transverse coupling has been detected.

CPLXT If true, synchro-betatron coupling has been detected.
DOCAV If true, cavities are considered.

DORAD If true, synchrotron radiation is considered.

DOALI If true, alignment errors are considered.

DOFLD If true, field errors are considered.

DOKICK If true, the orbit corrector table is considered.

38 CHAPTER 3. GLOBAL COMMON BLOCKS

The flags whose names begin with CP are set by various optics routines. They should be reset to false
before running through the machine.

The flags whose names begin with DO are set to true before each command (except DORAD which
is set from the BEAM command. If any of the effects is not desired, a program module should reset the
flag to false, do its computations, and then reset it to the value it had upon entry.

3.12 Summary Data for Optics

The global results of an optics calculation are kept in common block SUMMRY:

COMMON /SUMMRY/ QX, XIX, COSMUX, SINMUX, BXMAX, DXMAX, XCOMAX,

+ SIGXCO, SIGDX,

+ Qy, XIY, COSMUY, SINMUY, BYMAX, DYMAX, YCOMAX,
+ SIGYCO, SIGDY,

+ QS, ALFA, GAMTR, RBAR, DELTA

SAVE /SUMMRY/

It contains the variables:

QX Horizontal tune Q.

XIX Horizontal chromaticity &, = d@,/d6.
COSMUX cos(2mpy)

SINMUX sin(2m)

BXMAX Maximum value of 3,.

DXMAX Maximum value of horizontal dispersion D,.
XCOMAX Maximum horizontal orbit deviation.
SIGXCO Horizontal standard deviation for orbit.
SIGDX Horizontal standard deviation for dispersion.
QY Vertical tune Q.

X1y Vertical chromaticity £, = dQ,/dé.

COSMUY cos(2m py)

SINMUY sin(27 py)

BYMAX Maximum value of 3,.

DYMAX Maximum value of vertical dispersion D,,.
YCOMAX Maximum vertical orbit deviation.

SIGYCO Vertical standard deviation for orbit.

SIGDY Vertical standard deviation for dispersion.
Qs Synchrotron tune @,.

ALFA Momentum compaction.

3.13. LOGICAL UNIT NUMBERS FOR INPUT AND OUTPUT 39

GAMTR Transition energy factor 4, = E;,/my.
RBAR Average machine radius.
DELTA Relative energy error (global average in the presence of cavities).

3.13 Logical Unit Numbers for Input and Output

The logical unit numbers for the standard input/output files are kept in common block ZUNIT. Most
of them are set by the ZEBRA system:

COMMON /ZUNIT/ IQREAD, IQPRNT, IQPR2, IQLOG, IQPNCH,
+ IQTTIN, IQTYPE
SAVE /ZUNIT/

The unit numbers have the following meaning:

IQREAD Logical unit number for current input file.

IQPRNT Logical unit number for ZEBRA print file. Since ZEBRA uses this unit for some
messages, it is made the same as for the ECHO file.

IQPR2 Logical unit number for PRINT print file (receives all listings).

IQLOG Logical unit number for ECHO file (receives all messages).

IQPNCH Logical unit for PUNCH file (not used).

IQTTIN Logical unit for terminal input.

IQTYPE Logical unit for terminal output.

40

CHAPTER 3. GLOBAL COMMON BLOCKS

Part 11

MAD Subroutines and Functions

41

Chapter 4. Main Module “AA”

The AA module is the main executive of MAD. It also contains a few general-purpose utilities.

Table 4.1: Routines in the AA Module

Name | Purpose Section
AAATTR | Decode attributes for a statement 4.4
AABOOK | Book new statement bank 4.3
AACMND | Decode executable command -
AACOPY | Copy attributes between banks 4.5
AADROP | Drop statement bank 4.6
AADUMP | Dump command or element definition 4.7
AAELEM | Decode element definition -
AAEXEC | Execute command 4.2
AAFAIL | Print fatal error message 4.8
AAINFO | Print fatal error message 4.8
AATINIT | Initialize MAD data structure -
AAMAIN | Main loop routine for commands and definitions 4.1
AAMARK | Mark bank as modified 4.9
AAQPTS | Command routine for OPTION -
AAPARA | Command routine for PARAMETER -
AAPDRP | Delete precomputed maps after change in BEAM common 4.9
AAPMOD | Delete precomputed maps after parameter change 4.9
AAPROC | Build procedure list for SUBROUTINE or DO -
AAREAD | Read complete command -
AARUNS | Execute SUBROUTINE or DO -
AASERV | Switch routine for process code MPSRV (services) -
AASET | Command routine for SET command -
AASMOD | Check validity for redefinitions 4.10
AASUBR | Switch routine for process code MPSUB (subroutines) -
AAVALU | Command routine for VALUE command -
AAWARN | Print warning message 4.8

4.1 Statement Execution

The call

CALL AAMAIN

is the main program loop of MAD. It reads statements from the current input file until it sees a STOP
statement. MAD calls it twice, the first time to read the command dictionary, and the second time

to read the user’s commands.

For each command AAMAIN calls AAREAD to read and decode it. Then it calls the proper switch
routine for any definition or subroutine command. For executable commands it calls AAEXEC to force

the correct housekeeping to be done.

4.2 Switch Routine for Executable Commands

CALL AAEXEC(LABEL,KEY)

43

44 CHAPTER 4. MAIN MODULE “AA”

The parameters of AAEXEC are the command label and keyword respectively. The routine performs the
necessary book-keeping and uses the process code of the command to select another switch routine
which in turn calls the proper command routine. It is called for all executable commands, i. e. for
commands having process codes greater than 10. If a new process code is introduced, a new path
must be added to the multi-way IF-statement within this routine.

4.3 Book a New Statement Bank

CALL AABOOK(LBANK,LABEL,IPR,ISP,ILN,ILINK)

books a new statement bank and links it to the current keyword, pointed at by LCKEY. The routine
assumes that the current keyword pointer LCKEY has been set, and that the KEYWORD common has
been filled by a call to KWGET. The arguments of AABOOK are:

LBANK Pointer to the bank booked (output).

LABEL Name for the new bank (4 characters used, input).

IPR Process code to be stored (input).

ISP Subprocess code to be stored (input).

ILN Input line number, indicating the beginning of the definition command (input).
ILINK Number of the link in the current keyword bank which supports the new bank (input).

4.4 Attribute Decoding

CALL AAATTR(LDEF,LBANK,NKAT,EFLAG)

decodes the attributes of a statement and fills a command bank. It assumes that the current keyword
pointer LCKEY is set, and that the KEYWORD common has been filled by a call to KWGET. It normally
also checks that all attributes given are used, but optionally it returns when it sees the first unknown
attribute. This permits to continue decoding using a different template, a feature used by the sequence
editor of MAD. AAATTR has the following arguments:

LDEF Pointer to the bank containing the second default (input).
LBANK Pointer to the command bank to be filled (input).
NKAT Number of attributes of the corresponding keyword (input). If this value is positive,

AAATTR prints an error message if it sees an unknown attribute. If it is negative, its
absolute value is the number of attributes, and the routine returns when it sees the
first unknown attribute.

EFLAG Logical error flag (output).

4.5 Copy Attribute from a Bank to Another

CALL AACOPY(LSRC,ILINK,LTAR)

copies one attribute from the source bank to the corresponding attribute in the target bank and builds
all the required links. It has the arguments

4.6. DROPPING A COMMAND OR DEFINITION 45

LSRC Pointer to the source bank (input).
ILINK Number of the attribute to be copied (same in both banks, input).
LTAR Pointer to the target bank (input).

4.6 Dropping a Command or Definition

CALL AADROP(L)

deletes a command or definition pointed at by L. This call first marks any dependent expression and
variable reference banks by setting the drop bit MXDRP and then unlinks them from the corresponding
tables. Finally it deletes the command or definition bank and all its dependent banks.

4.7 Dump a Command or Element Definition

CALL AADUMP(L)

writes the contents of a command or definition pointed at by L on the ECHO file.

46

CHAPTER 4. MAIN MODULE “AA”

4.8 Program Messages

The calls

CALL AAFATL(SUBR,NLINES,MSG)
CALL AAINFO(SUBR,NLINES,MSG)
CALL AAWARN(SUBR,NLINES,MSG)

are used for all messages produced by MAD. The arguments are the same for all three routines:

SUBR

NLINES

MSG

Character constant containing the name of the calling routine. This will be printed as
part of the message.

Number of lines to be printed.
A character array dimensioned in these routines as
CHARACTER* (%) MSG(*)

containing the message. A common block has been defined as

COMMON /MESSAGE/ MSG(8)
CHARACTER*120 MSG

which may be filled before calling one of these routines.

The routines have the following purposes:

AATNFO

AAWARN

AAFATL

Example:

Print informational message. These messages can be suppressed by the command
OPTION,-INFO

or reactivated by the command
OPTION,INFO

Print warning message. These messages can be suppressed by the command
OPTION,-WARN

or activated by the command
OPTION,WARN

Print fatal error message. These messages cannot be suppressed. If MAD reads input
from a file, a fatal error causes it to enter scanning mode.

CHARACTER* (MCNAM) LABEL

LABEL = °LABEL’

CALL UTLENG(LABEL, ILENG)

MSG(1) = ’Recursive call to "’ // LABEL(1:ILENG) // ’",’
MSG(2)
CALL AAWARN(’AARUNS’, 2, MSG)

’Call skipped.’

prints the message

4.9. PRECOMPUTED MAPS 47

AARUNS. ## Warning ## Recursive call to "LABEL",
Call skipped.

The same format could be obtained by
CHARACTER* (MCNAM) LABEL
LABEL = ’LABEL’
CALL UTLENG(LABEL, ILENG)
WRITE (MSG, 910) LABEL(1:ILENG)

910 FORMAT(’Recursive call to "’,A,’".°/’Call skipped.’)
CALL AAWARN(’AARUNS’, 2, MSG)

4.9 Precomputed Maps

CALL AAPDRP

For efficiency reasons MAD stores various transfer maps for later use as long as there is no data change
which makes them obsolete. An update of the BEAM bank makes transfer maps obsolete. Therefore
it must always be done via ENPUT, which will call AAPDRP when it has finished. This ensures that all
precomputed maps are dropped.

CALL AAPMOD

Before executing a command, AAEXEC calls AAPMOD to check definitions and their dependences. AAPMOD
sets the status bit MXMOD for all obsolete maps, and then drops any marked maps. Marking is done by
the call

CALL AAMARK(SUBR,LBANK)

where

SUBR Character constant containing the name of the calling routine (used for debug mes-
sages).

LBANK Pointer to the bank to be marked as modified.

Two more status bits are used for LUMPs. MXKNW marks lumps when their modify status is known,
and MXLMP helps to detect recursive LUMP definitions.

4.10 Check Validity for Redefinitions

CALL AASMOD) (IDIR,LOLD,LNEW)

When a definition is replaced, its name must never be transferred to a different class of objects.
One exception is allowed: Beam elements and beam lines may be interchanged. At each redefinition
of a name MAD calls AASMOD in order to detect the acceptability of the redefinition, and to delete
precomputed maps which may become obsolete due to the redefinition. The parameters are:

IDIR Directory index of the item being redefined.
LOLD Pointer to the old definition.

LNEW Pointer to the new definition.

Chapter 5. Beamparam Module “BM?”

The BM module implements the BMPM command. For a description refer to the MAD Physicist’s
Manual [14].

48

Chapter 6. Closed Orbit Correction Routines “CQO”

The C0 module implements the commands related to closed orbit. The routines are listed in table 6.1.
The algorithms are described in the MAD Physicist’s Manual.

Table 6.1: Routines in the CO module

Name | Purpose Section
COCORR | Command routine for CORRECT command -
COGDIS | Fetch dispersion readings for a plane from table -
COGKIK | Fetch kicker strengths for a plane from table -
COGMON | Fetch monitor readings for a plane from table -
COLDIS | Orbit and dispersion correction by micado algorithm -
COLORB | Orbit correction only by micado algorithm -
COMAIN | Switch routine for CO module -
COMICA | Command routine for MICADO command -
COMDIS | Set up influence matrix for orbit and dispersion for a plane -
COMORB | Set up influence matrix for orbit for a plane -
COPDIS | Print dispersion readings -
COPKIK | Print kicker strengths -
COPMON | Print orbit readings -
CORDIS | Command routine for GETDISP command -
CORKIK | Command routine for GETKICK command -
CORMON | Command routine for GETORBIT command -
COSKIK | Increment kicker strengths for a plane in table -
COTBLE | Set up corrector and monitor table -
COWDIS | Command routine for PUTDISP command -
COWKIK | Command routine for PUTKICK command -
COWMON | Command routine for PUTORBIT command -

49

Chapter 7. Decoder Routines “DC”

The DC module contains the high-level routine for data decoding. Its main entry point is DCATTR,
the routine to decode a single command attribute. It is called from various places in the AA module,
and details on the other routines are of no concern to the programmer.

Table 7.1: Routines in the DC module

Name | Purpose Section
DCATTR | Main entry point to DC module 7.1
DCBEAM | Decode beam line reference -
DCCONS | Decode constraint -
DCFORM | Decode formal parameter list for beam line -
DCINDX | Decode subscript list -
DCINIT | Called from AAINIT to initialize DC module -
DCLIST | Called from DCBEAM to decode beam line list -
DCNAME | Decode name attribute -
DCRANG | Decode range reference -
DCREPT | Decode repetition count -
DCSTRG | Decode character string -
DCVREF | Decode variable reference -

7.1 Decode a Single Command Attribute

CALL DCATTR(ITYPE,LBANK,IFRST,ILAST,EFLAG)

decodes a single statement attribute preceded by an optional repeat count. The routine assumes that
the current keyword pointer LCKEY is set, and that the KEYWORD common has been filled by a call to
KWGET. DCATTR has the arguments

ITYPE MAD data type of the attribute (input),

LBANK Pointer to the command bank to be filled (input),

IFRST Attribute number within the command bank where to store the value (input),

ILAST For dimensioned attributes, the last attribute number which may be filled with repeti-

tions. This is incremented for each value read (input/output),
EFLAG Logical error flag (output).

Direct use of this subroutine is not recommended, but it may be useful under special circumstances.

50

Chapter 8. Directory Routines “DI”

The routines of the DI module provide methods to create and access directories (Section 2.9).

Table 8.1: Routines in the DI module

Name | Purpose Section
DIADD | Add a name to a directory (internal routine) -
DIDEFI | Define a name in a directory 8.1
DIDROP | Drop a name from a directory 8.2
DIFIND | Find a name in a directory 8.3
DILOOK | Look up a name (internal routine) -
DIMAKE | Build new directory 8.5
DINAME | Retrieve name from directory 8.4
DIREFE | Find reference to a possibly indefined name 8.6

8.1 Defining a Name

CALL DIDEFI(LDIR,LABEL,LBANK)

defines a new name in a given directory. If the name does not exist in the directory, a new entry is
created for the name. If the name was already defined, DIDEFI gives appropriate messages. It may
also drop and/or modify some precomputed data, when a redefinition makes this necessary. In all
cases DIDEFI stores the bank pointer LBANK in the proper position of the pointer bank.

LDIR(4) Directory handle (input).
LABEL Name to be defined (input).

LBANK (1) Bank pointer to be associated with LABEL (input).

8.2 Removing a Definition

CALL DIDROP(LDIR, LABEL)

removes a bank pointer from a directory. If LABEL is found in LDIR, the corresponding bank pointer
is cleared in the directory. The name itself remains in the directory, and the bank pointed at by the
original bank pointer is not dropped.

LDIR(4) Directory handle (input).

LABEL Name whose definition is to be removed (input).

51

52 CHAPTER 8. DIRECTORY ROUTINES “DI”

8.3 Finding a Name

When it is known that a name exists in a directory, both directory index and bank pointer can be
retrieved by the call

CALL DIFIND(LDIR, LABEL, IDIR, LBANK)

LDIR(4) Directory handle (input).
LABEL Name to be looked for (input).
IDIR Directory index for LABEL in LDIR (output).

LBANK (1) Bank pointer associated with LABEL in LDIR (output).
If the name is not found, both IDIR and LBANK are returned as zero.

8.4 Retrieving a Name

CALL DINAME(LDIR, IDIR, LABEL)

Retrieves a name from a directory.

LDIR(4) Directory handle (input).
IDIR Directory index for the name requested (input).
LABEL Label at index IDIR in directory LDIR (output).

8.5 Creating a Directory

ALL DIMAKE(NENTRY, ISUP, LDIR)

creates an empty directory and links the new directory to the root bank. Thus the directory will
automatically be dumped when the MAD data structure is dumped.

NENTRY The initial number of entries (input). If required, the directory grows later by adding
NENTRY entries at a time.

ISUP Bias of the first supporting link in the root bank (input). There must be 4 contiguous
links allocated to each directory.

LDIR(4) directory handle to be transmitted to other directory utilities (output). It must be
dimensioned as LDIR(4), and must reside in a reference link area. DIMAKE fills it with
pointers to the four directory banks.

8.6 Referring to a Name

CALL DIREFE(LDIR, LABEL, IDIR)

Returns a reference to a name in a directory. If the name does not exist in the directory, a new entry
is created for the name with a zero pointer. In any case the directory index for the name is returned.

LDIR(4) Directory handle (input).
LABEL Name to be looked for (input).

IDIR Directory index for LABEL in LDIR (output).

Chapter 9. Emittance-Related Routines “EM”

The EM module implements the emittance-related commands. The routines are listed in Table 9.1.
The algorithms are described in in [5] and in the MAD Physicist’s Manual.

Table 9.1: Routines in the EM module

Name | Purpose Section

EMCE2I | Convert eigenvectors to internal sigma matrix form -
EMCI2T | Convert beam matrix from internal to TRANSPORT form -
EMCT2I | Convert beam matrix from TRANSPORT to internal form -
EMDAMP | Calculate radiation damping in an element -
EMEMDO | Command routine for EMIT command -
EMEMGO | Work routine for EMIT command -
EMENDO | Command routine for ENVELOPE command -
EMENGO | Work routine for ENVELOPE command -
EMENPR | Print beam sizes for ENVELOPE command -
EMENSV | Save beam sizes for ENVELOPE command -
EMEVDO | Command routine for EIGEN command -
EMEVGO | Work routine for EIGEN command -
EMEVPR | Print orbit and eigenvectors for EIGEN command -
EMEVSV | Save orbit and eigenvectors for EIGEN command -
EMINIT | Initialize radiation damping calculations -
EMNORM | Command routine for NORMAL command -
EMSSIG | Work routine for SAVESIGMA command -
EMSUMM | Make summary calculations for radiation damping -
EMTWDO | Command routine for TWISS1 command -
EMTWGO | Work routine for TWISS1 command -
EMTWPR | Print Mais-Ripken betatron functions -
EMTWSV | Save Mais-Ripken functions for TWISS1 command -

53

Chapter 10. Environment Setup “EN”

The EN module implements the commands to set up the machine environment. It also contains some
services for other modules. The algorithms are described in the MAD Physicist’s Manual as far as
they concern physics calculations.

Table 10.1: Routines in the EN module

Name | Purpose Section
ENBEAM | Command routine for BEAM command -
ENDUMP | Command routine for SELECT command -
ENFIX | Must be called for some commands in other modules to finish the envi- 10.1
ronment set up begun with a BEAM command
ENFLAG | Set an output flag (internal routine) -
ENFREQ | Must be called for some commands to change the RF frequency 10.2
ENGET | Called by AAEXEC to update BEAM common from the BEAM bank 10.3
ENMAIN | Switch routine for EN module -
ENPRNT | Command routine for PRINT command -
ENPUT | Called by any routine which changes the BEAM common, to update the 10.4
BEAM bank.
ENRANG | Encode a range reference 10.5
ENSBET | Command routine for SAVEBETA command -
ENSPCA | Define a SPLIT position (internal routine) -
ENSPLT | Command routine for SPLIT command -

ENSRNG | Service routine to perform an action over a range 10.6
ENSTYP | Service routine to perform an action on all elements with a certain TYPE 10.7
attribute

ENUSE Command routine for USE command -

10.1 Fix up BEAM Data

CALL ENFIX

must be called by physics modules before using RF data and/or beam sizes which depend on a BEAM
command. ENFIX figures out which data have been entered in BEAM and computes the missing values
accordingly. It adjusts the frequencies of all RF cavities according to the revolution frequency.

10.2 Alter RF Frequencies

CALL ENFREQ(DELTAP,DELTAT)

adjusts the RF frequencies of all cavities such as to get an approximate average energy error of DELTAP.
It returns the expected difference in revolution time DELTAT.

10.3 Update BEAM Common from BEAM Bank

CALL ENGET

54

10.4. UPDATE BEAM BANK FROM BEAM COMMON 55

This call is made by AAEXEC before each executable command to insure that the contents of the BEAM
common agree with those of the BEAM bank.

10.4 Update Beam Bank from BEAM Common

CALL ENPUT

This call must be made by any routine which modifies the contents of the BEAM common, to ensure
that the changes are transmitted into the BEAM bank.

10.5 Encode a Range Reference

CALL ENRANG(LRNG,RNGNAM)

returns a character representation of a range reference. It has two arguments:
LRNG Pointer to a range reference bank (input).
RNGNAM Character string equivalent to the input form which gave the range reference (output).

This string must accommodate at least 60 characters.

10.6 Perform an Action on all Elements of a Range

CALL ENSRNG(LRNG,ACTION,IDUM1,IDUM2,DONE)

loops over the elements in the current range of the working beam line and calls the EXTERNAL routine
ACTION for each element which belongs to a given range reference. It has the arguments:

LRNG Pointer to the range reference bank to be used for selection (input).

ACTION FORTRAN subroutine which will be called for each selected element. It must appear
in an EXTERNAL statement in the calling routine and be declared as

SUBROUTINE ACTION(IPOS,IDUM1,IDUM2,EFLAG)

with the arguments

IPOS Position number for the selected element (input).
IDUM1,IDUM2 Transmitted from the routine calling ENSRNG (input).

EFLAG Logical error flag (output).
IDUM1,IDUM2 Two arguments which will be transmitted to ACTION (input/output).

DONE Is returned as .TRUE., if any element was selected (output).

56

CHAPTER 10. ENVIRONMENT SETUP “EN”

10.7 Perform an Action on all Elements Having a Given TYPE

CALL ENSTYP(TYPE,ACTION,IDUM1,IDUM2,DONE)

loops over the elements in the current range of the working beam line nd calls the EXTERNAL routine
ACTION for each element which has the specified value of the TYPE attribute. It has the arguments:

TYPE

ACTION

IDUM1,IDUM2

DONE

Value of the TYPE attribute for selection (input).

FORTRAN subroutine which will be called for each selected element. It must appear
in an EXTERNAL statement in the calling routine and be declared as

SUBROUTINE ACTION(IPOS,IDUM1,IDUM2,EFLAG)

with the arguments

IPOS Position number for the selected element (input).
IDUM1,IDUM2 Transmitted from the routine calling ENSRNG (input/output).
EFLAG Logical error flag (output).

Two arguments which will be transmitted to ACTION (input/output).

Returned as .TRUE., if any element was selected (output).

Chapter 11. Error Definitions “ER”

The ER module provides definitions for machine imperfections. The routines are listed in table 11.1.
Details about the data structure are found in Section 2.10.2.

Table 11.1: Routines in the ER module

Name | Purpose Section
ERALCA | Internal routine for ERALIG -
ERALIG | Command routine for EALIGN command -
ERFCCA | Internal routine for ERFCOM -
ERFCOM | Command routine for EFCOMP command -
ERFICA | Internal routine for ERFIEL -
ERFIEL | Command routine for EFIELD command -
ERLIST | Internal routine for ERPRNT -
ERMAIN | Switch routine for ER module -
EROPT | Command routine for EOPT command -
ERPRNT | Command routine for EPRINT command -
ERSAVE | Command routine for ESAVE command -

57

Chapter 12. Expression Handler “EX?”

The EX module provides methods to decode and evaluate expressions. Details about the data structure

are found in

Section 2.6.4.

Table 12.1: Routines in the EX module

Name | Purpose Section
EXBIN | Internal routine for expression building -
EXCONS | Internal routine for expression building -
EXCOPY | Internal routine for expression building -
EXDUMP | Dump an expression bank 12.1
EXEVAL | Evaluate a normal expression 12.2
EXEVL1 | Evaluate a string expression 12.2
EXFILL | Called from AAEXEC to fill in references 12.3
EXHALF | Internal routine for expression building -
EXINIT | Called from AAINIT to initialize EX module

EXLKEX | Link a new expression bank 12.4
EXLKVR | Link a new variable reference bank 12.5
EXLOAD | Internal routine for expression building -
EXMAKE | Build normal expression bank 12.6
EXMAK1 | Build string expression bank 12.6
EXOPER | Internal routine for expression interpreter -
EXORDR | Called from AAEXEC to order expressions 12.7
EXREAD | Decode normal expression 12.8
EXREFE | Internal routine for expression building -
EXSTRG | Decode string expression 12.8
EXUNST | Internal routine for expression building -
EXUPDT | Called from AAEXEC to update expressions 12.9

The EX module uses a set of common blocks, defined in COMDECK EXPRESS, for the expression
table. This table is filled in by the expression decoders before building expression banks:

+

MAXEXP

NXOPR

IXOPR

IXSUBi

AXBANK

AXATTR

RXVAL

PARAMETER (MAXEXP = 100)
COMMON /EXPRSA/ NXOPR, IXOPR(MAXEMP),
IXSUB1(MAXEXP), IXSUB2(MAXEXP), IXSUB3(MAXEXP)
COMMON /EXPRSC/ AXBANK(MAXEXP), AXATTR(MAXEXP)
COMMON /EXPRSR/ RXVAL(MAXEXP)
SAVE /EXPRSA/, /EXPRSC/, /EXPRSR/
CHARACTER* (MCNAM) AXBANK, AXATTR

Maximum number of postfix operations allowed.

Actual number of operations.

Operation codes (Section 2.6.4).

it* subscript for variable load operation.

Bank name for a variable load operation (parameter or bank attribute).
Attribute name for a variable load operation (bank attribute load).

Value for a constant load.

58

12.1. DUMP AN EXPRESSION BANK 59

12.1 Dump an Expression Bank

CALL EXDUMP(L)

dumps the expression bank pointed at by L on the ECHO file.

12.2 Evaluate a Single Expression

CALL EXEVAL(L)

evaluates the expression pointed at by L by calling EXOPER for each operation in turn.

12.3 Fill in Variable References

CALL EXFILL

loops over the variable reference table and fills in any missing pointers. It gives messages for improper
use of variables and/or undefined operands.

12.4 Link a New Expression Bank

CALL EXLKEX(L)

adds the expression bank pointed at by L to the ezpression table.

12.5 Link a New Variable Reference Bank

CALL EXLKVR(L)

adds the variable reference bank pointed at by L to the variable reference table.

12.6 Build an Expression Bank from Table

CALL EXMAKE(LBANK,ILINK,IDATA,RVAL,IEXPR)

builds a new expression bank, fills it with the current expression from common EXPRESS, and links
the new bank to the expression table . It has the parameters

LBANK Bank into which the result shall be stored, and by which the expression bank is sup-
ported (input).

ILINK Link number in the bank at LBANK which will support the new expression bank (input).

IDATA Bias in the bank at LBANK where the result shall be stored (input).

RVAL Value of the expression (for a constant expression only, input).

IEXPR Type of expression (input):

1: Constant expression,

60 CHAPTER 12. EXPRESSION HANDLER “EX”

2: Ordinary expression requiring evaluation,

3: Deferred expression.

A special routine builds expression banks for expressions coming from internal strings:

CALL EXMAK1(LTAB,LBNK,ILINK)

builds a new expression bank, fills it with the current expression from common EXPRESS, and links
the new bank to the expression table . It has the parameters

LTAB Pointer to an open dynamic table (Chapter 27) which may be used as a source for
operands.
LBNK Bank into which the result shall be stored, and by which the expression bank is sup-

ported (input).
ILINK Link which will support the new expression bank (input).

In this case the operands of the expression can also come from a table column, allowing to combine
the columns like in a spread-sheet program.

12.7 Order Arithmetic Expressions for Proper Evaluation

CALL EXORDR

orders the expression table for correct evaluation of dependent expressions. It skips deferred expression,
but checks that all their operands are defined. The order bit MXORD marks expressions which are already
in order, and the defer bit MXDEF identifies deferred expressions.

12.8 Decode a Single Expression

CALL EXREAD(IEVAL,RVAL,ISEEN)

decodes an arithmetic expression and stores the decoded expression in postfix notation in commeon
EXPRESS. It does not build an expression bank. To this purpose EXMAKE must be called. The arguments
are

IEVAL Type of expression expected (input):

1: Must be constant expression.
2: Expression may depend on variables, but may not deferred.

3: All expression types allowed.
RVAL Value of the expression (constant expression only, output).
ISEEN Actual type of expression seen (output):

1: Constant expression, no later evaluation required.
2: Ordinary expression, must be linked to the expression table.

3: Deferred expression, requires deferred evaluation.

Expressions stored in strings, as used for plotting and listing tables, are decoded by the call

12.9. EVALUATE ALL NON-DEFERRED EXPRESSIONS 61

CALL EXSTRG(NAME,LTAB,LBNK,ILINK,RVAL,EFLAG)

It stores the decoded expression in postfix notation in common EXPRESS, and then builds an expression
bank by calling EXMAK1. Its arguments are

NAME

LTAB

LBNK

ILINK
RVAL

EFLAG

12.9

Name of a table column, of a table descriptor, of a global string, or of an expression
related to a table (input). The name is searched for in this order.

Pointer to an open dynamic table (input).

Bank into which the result shall be stored, and by which the expression bank is sup-
ported (input).

Link which will support the new expression bank (input).
Value of the expression (constant expression only, output).

Error flag (logical, output).

Evaluate All Non-Deferred Expressions

CALL EXUPDT

loops over the expressions ordered by EXORDR and evaluates each of them in turn by a call to EXEVAL.

Chapter 13. File Handlers “FL”

The FL module provides the switch and command routines for file access. It also contains a few
file-handling utilities.

Table 13.1: Routines in the FL module

Name | Purpose Section
FLASSI | Command routine for ASSIGN command -
FLCALL | Command routine for CALL and RETURN commands -
FLCLOS | Close a file 13.1
FLCSYS | Command routine for SYSTEM command -
FLDELE | Delete a file 13.2
FLDUMP | Command routine for POOLDUMP command -
FLEND | Shut down file system 13.3
FLINIT | Initialize file system 13.4
FLLOAD | Command routine for POOLLOAD command -
FLMAIN | Switch routine for FL. module -
FLNAME | Retrieve file name form file table 13.5
FLNFIX | Convert file name depending on operating system 13.6
FLNSET | Build file name for standard file 13.6
FLOPEN | Open file, system-independent part 13.7
FLRTFS | Command routine for RETRIEVE command -
FLSYST | Open file, system-dependent part 13.7
FLTELL | Command routine for STATUS command -
FLTEXT | Open text file, system-dependent 13.7
FLWTFS | Command routine for ARCHIVE command -
FLXCIT | Command routine for EXCITE and INCREMENT commands -

The FL module uses a set of common blocks, FLTABLE, for the file table, used to hold all known
file names:

+

PARAMETER (MAXDEF = 20, MAXFIL = 50)

COMMON /FLTABC/ IDFN(O0:MAXFIL), IDAC(O:MAXFIL), IDDR(D:MAXFIL),
IDFR(0:MAXFIL), IDLC(0:MAXFIL)

COMMON /FLTABI/ IDST(O0:MAXFIL), IDLR(O:MAXFIL), IDLF(O:MAXFIL)

SAVE /FLTABC/, /FLTABI/
CHARACTER* (MCFIL) IDFN
CHARACTERx*1 IDAC, IDDR, IDFR, IDLC

The table is indexed by logical unit number and contains:

MAXDEF

MAXFIL

IDFN

IDAC

IDDR

IDFR

Highest reserved unit number (for standard files).
Highest allocatable unit number.

File names as character strings.

Access codes: S for sequential, D for direct.

Data flow direction: R for read, W for write.
Format code: F for formatted, U for unformatted.

62

13.1. CLOSE A FILE 63

IDLC File location: D for disk, T for terminal, S for scratch.

IDST Status code: 0 for free entry, 1 for used entry, -1 for deleted file.
IDLR Record length in characters for direct access files.

IDLF File length in records for direct access files (relevant on IBM only).

13.1 Close a File

CALL FLCLOS(IUNIT,EFLAG)

Closes a logical file.
IUNIT Logical unit number for the file (input).

EFLAG Logical error flag (output).

13.2 Delete a File

CALL FLDELE(IUNIT,EFLAG)

Deletes a file from the file system.
IUNIT Logical unit number for the file (input).

EFLAG Logical error flag (output).

13.3 Shut down File System

CALL FLEND

closes all open files and deletes any scratch files.

13.4 Initialize File System

CALL FLINIT

initializes the internal file table.

13.5 Retrieve File Name from File Table

CALL FLNAME(IUNIT,FILNAM)

retrieves the file name for a logical unit from the file table. The name returned is the name under
which the file is known to the operating system.

IUNIT Logical unit number for the file (input).

FILNAM String to receive the file name (output, at least MCFIL characters).

64 CHAPTER 13. FILE HANDLERS “FL”

13.6 Convert File Name Depending on Operating System

CALL FLNFIX(STRNAM,MODE,FILNAM,LENG,EFLAG)

converts an internal logical stream name, as defined by the MAD program user, to an external file
name which will be known to the operating system. This includes any format change to the file name
required to make it acceptable to the operating system. On VM/CMS systems, e. g. the name is
converted to upper case and split into the three parts (filename, filetype, filemode).

STRNAM Internal logical stream name (input character string specified by the program user).
MODE String containing the following four characters (input):

1¢* character, Access mode: S for sequential, D for direct.
274 character, Direction: R for read, W for write.
374 character, Format flag: F for formatted, U for unformatted.

4** character, Location of file: D for disk, T for terminal, S for scratch.

FILNAM External file name built, acceptable to the operating system (output). This must
accommodate at least MCFIL characters.

LENG The actual length of the external file name (output).

EFLAG Logical error flag (output).

CALL FLNSET(STRNAM,FILNAM)

is a simplified version of the above, it is used for the MAD standard files.
STRNAM Internal logical stream name.

FILNAM External file name built, acceptable to the operating system (output). This must
accommodate at least MCFIL characters.

13.7 Open a File

CALL FLOPEN(STRNAM,MODE,LREC,LFIL,IUNIT,EFLAG)

opens a file, and stores its external file name in the file table.
STRNAM Internal logical stream name.
MODE String containing the following four characters (input):

1¢* character, Access mode: S for sequential, D for direct.
274 character, Direction: R for read, W for write.
374 character, Format flag: F for formatted, U for unformatted.

4** character, Location of file: D for disk, T for terminal, S for scratch.
LREC Record length in characters (input, not relevant for formatted sequential files).

LFIL File length in records (input, only relevant for IBM direct access files).

13.7. OPEN A FILE

TUNIT

EFLAG

Logical unit number (output).

Logical error flag (output).

The operating system dependent part of file open is done by FLSYST

CALL FLSYST(FILNAM,MODE,LREC,LFIL,IUNIT,EFLAG)

FILNAM

MODE

LREC

LFIL

TUNIT

EFLAG

External file name built by FLNFIX
String containing the following four characters (input):

1¢* character, Access mode: S for sequential, D for direct.
2"¢ character, Direction: R for read, W for write.
3"¢ character, Format flag: F for formatted, U for unformatted.

4** character, Location of file: D for disk, T for terminal, S for scratch.
Record length in characters (input, not relevant for formatted sequential files).
File length in records (input, only relevant for IBM direct access files).
Logical unit number (input).

Logical error flag (output).

For standard MAD files, MAD uses the simpler call

CALL FLTEXT(FILNAM,DIR,LREC,IUNIT,EFLAG)

FILNAM

DIR

LREC

TUNIT

EFLAG

External file name built by FLNSET

One-character variable (input): R for read, W for write.

Record length in characters (input, no longer relevant, should be zero).
Logical unit number (input).

Logical error flag (output).

65

Chapter 14. HARMON Module “HA”

The HA module implements the commands of the HARMON module. The algorithms used are described
in [7] and in the MAD Physicist’s Reference Manual.

Table 14.1: Routines in the HA module

Name | Purpose Section
HAATUN | Find derivatives 0Q/0¢ -
HABEGN | Command routine for HARMON command -
HACELL | Command routine for HCELL command -
HACFIT | Adjust chromaticities to desired values -
HACHCL | Calculate chromaticities -
HACHRM | Command routine for HCHROMATICITY command -
HADBET | Find derivatives 03/9¢ -
HADDSP | Find derivatives D /3¢ and 02D /H4* -
HADTUN | Find derivatives 8°Q /6% and 8°Q/06° -
HAFCN | Matching routine for HA module -
HAFUNC | Command routine for HFUNCTION command -
HALONG | Set up “long” table of lattice functions -
HAMAIN | Switch routine for HA module -
HAPAVE | Print lattice functions averaged over elements -
HAPRNT | Matching print-out -
HARESC | Command routine for HRESONANCE command -
HARESO | Compute resonance coeflicients -
HARSIG | Internal routine for HARESO -
HASHRT | Set up “short” table of averaged lattice functions -
HASTRG | Retrieve multipole strengths -
HATHIN | Organize thin lens calculations -
HATUNE | Command routine for HTUNE command -
HAVARY | Command routine for HVARY command -
HAWEIG | Command routine for HWEIGHT command -
HA4ANA | Find fourth-order resonance coeflicients -
HA4SUM | Internal routine for HA4ANA -

66

Chapter 15. Keyword Module “KW?”

The KW module is the keyword decoder. It provides utilities for accessing keyword banks.

Table 15.1: Routines in the KW module

Name | Purpose Section
KWDIM | Decode type and dimension for one keyword attribute -
KWDUMP | Dump keyword bank on ECHO file 15.1
KWGET | Unpack keyword bank to KEYWORD common 15.2

KWGRP | Decode one keyword attribute group -
KWMAIN | Command routine for KEYWORD and KEYEDIT commands -
KWMAKE | Book keyword bank and link it to master keyword 15.3
KWPUT | Pack KEYWORD common to keyword bank 15.4

15.1 Write Keyword Definition on ECHO File

CALL KWDUMP (L)

writes the keyword definition pointed at by L on the ECHO file.

15.2 Unpack Keyword Definition

CALL KWGET(LKEY,ILN,IPR,ISP,NKAT)

unpacks a keyboard definition and stores information in local variables and in the KEYWORD common.

LKEY Pointer to the keyword to be unpacked (input).

ILN Line number of last definition of the keyword (output).
IPR Process code for this keyword (output).

ISP Subprocess code for this keyword (output).

NKAT Number of keyword attributes for this keyword (output).

This call fills the following common arrays:

IATYPE MAD data types for the keyword attributes.
IADIM1 First dimensions for the keyword attributes.
TADIM2 Second dimensions for the keyword attributes.
IADIM3 Third dimensions for the keyword attributes.
KATNAM Names of keyword attributes.

67

68 CHAPTER 15. KEYWORD MODULE “KW”

15.3 Book New Keyword Bank

CALL KWMAKE(LABEL,IPR,ISP,NKAT)

books a new keyword bank, links it to the master keyword and to the keyword!directory.

LABEL Name of the new keyword (input).
IPR The process code (input).

ISP The subprocess code (input).

NKAT Number of keyword attributes (input).

15.4 Pack Keyword Definition

CALL KWPUT(LKEY,NKAT)

packs the following common arrays to a keyword bank:

IATYPE MAD data types for the keyword attributes.
IADIM1 First dimensions for the keyword attributes.
TADIM2 Second dimensions for the keyword attributes.
IADIM3 Third dimensions for the keyword attributes.
KATNAM Names of keyword attributes.

The call has two arguments:
LKEY Pointer to the keyword bank to be filled (input).

NKAT Number of keyword attributes (input).

Chapter 16. Lie-Algebra Module “LA”

The LA module contains routines to operate on Lie-algebraic maps [8]. A Lie-algebraic map represents
the transformation of phase space from entrance to exit of an element as the Lie transformation

zl(z) = efrgifaigifoigfe | .zlgl), for i=1...6.
The f; are homogeneous polynomials in Z.
Many routines have been lifted from MARYLIE, but most of them have been extensively modified.

There are also some new routines. Note that not all routines keep a f; term. The descriptions below
use the following conventions:

FP is an array containing the generators for a map F.
FM is a 6 X 6 matrix representing the linear terms of the map F.

The algorithms used are documented in [8] and in the MAD Physicist’s Reference Manual.

Table 16.1: Routines in the LA module

Name | Purpose Section
LABETA | Extract betatron portion of a transfer map 16.2.1
LABRKS | Compute Poisson brackets relevant for the Lie series -

LACHRM | Chromatic expansion of a static transfer map 16.2.2
LADC2R | Transform dynamic map from Cartesian basis to resonance basis 16.3.2
LADEIG | Find eigenvalues of a dynamic transfer matrix 16.3.1
LADPUR | Internal routine to purify dynamic maps -

LADPU2 | Transform dynamic map to Floquet variables 16.3.2
LADPU3 | Transform third order part of dynamic map to normal form 16.3.2
LADPU4 | Transform fourth order part of dynamic map to normal form 16.3.2
LADR2C | Transform dynamic map from resonance basis to Cartesian basis 16.3.2

LADYNA | Command routine for the DYNAMIC command -
LAEMIT | Command routine for the NORMAL command Note that this routine no -
longer uses Lie algebra.

LAFXFN | Transform polynomial on phase space with a transfer map 16.1.2
LALUMP | Find Lie algebraic transfer map for a LUMP 16.1.1
LAMAIN | Switch routine for the LA module -

LAMOVE | Transform orbit with a transfer map and return map around orbit 16.1.3
LASC2R | Transform static map from Cartesian basis to resonance basis 16.2.4
LASEIG | Find eigenvalues of a static transfer matrix 16.2.3
LASPUC | Transform third order chromatic part of static map to normal form 16.2.4
LASPUG | Transform third order geometric part of static map to normal form 16.2.4
LASPUR | Internal routine to purify static maps -

LASPU4 | Transform fourth order part of static map to normal form 16.2.4
LASR2C | Transform static map from resonance basis to Cartesian basis 16.2.4

LASTAT | Command routine for the STATIC command -
LATRNS | Track orbits with the truncated Lie series -
LATURN | Find one turn map for the working beam line 16.1.1

69

70 CHAPTER 16. LIE-ALGEBRA MODULE “LA”

16.1 Operations on General Maps

16.1.1 One-Turn Maps

CALL LATURN(N,FP,FM)

returns the map F for the main beam line expansion. There are three arguments:

N Desired order N of the map (input, 2 < N < 6), i. e. the order of the highest polynomial
kept.
FP,FM Generators and matrix of F (output).

To improve speed, transfer maps are kept in ZEBRA banks linked to the sequence bank (Section 2.10),
as soon as they are calculated. When LATURN is called, MAD looks for such a map with the given
order. If finds one, it immediately returns the map. Otherwise it creates this map by using the call

CALL LALUMP(N,LSEQ,FP,FM)

which concatenates the maps for all elements in a specified beam line expansion. There are four

arguments:

N Desired N order of the map (input, 2 < N < 6), order of the highest polynomial kept.
LSEQ Pointer to the beam line expansion, normally LCSEQ (input, Section 2.10),

FP,FM Generators and matrix of F (output).

16.1.2 Transform Polynomial with a Transfer Map

CALL LAFXFM(N,GP,GM,FP,HP)

Transforms a polynomial F' with a map . There are five arguments:

N Order N of the map G (2 < N < 6, input),
GP,GM Generators and matrix of G (input),

FP Polynomial F to be transformed (input),
HP Resulting polynomial H (output).

F and H are stored in the same format as the generators of a map.

16.1.3 Transform Map to Map about an Orbit

CALL LAMOVE(N,FP,FM,O0RBIT,HP,HM)

Moves a given orbit through a map F and returns the map H for the motion around the orbit. There
are six arguments:

N Order N of the map F (2 < N < 6, input),
FP,FM Generators and matrix for 7 (input),
ORBIT The orbit to be moved through F,

HP ,HM Map H of order N around the orbit (output).

16.2. OPERATIONS ON STATIC MAPS 71

16.2 Operations on Static Maps

A static map does not change particle energy.

16.2.1 Betatron factor of a Static Map

CALL LABETA(N,FP,FM,BP,BM)

extracts the betatron factor 5 from a static map. There are five arguments:

N Order N of the given map (input, 2 <N < 4),
FP,FM Static map F,
BP,BM Betatron factor B of F (output).

16.2.2 Chromatic expansion of a Static Matrix

CALL LACHRM(N,FP,FM,AM1,AM2)

extracts the first and second derivatives of the transfer matrix with respect to the energy error from
a static map. There are five arguments:

N Order N of the given map F (input, 2 < N < 4),
FP,FM Generators and matrix of F (input),
AM1,AM2 Two 6 X 6 matrices which will receive the first and second derivative.

16.2.3 Eigenvalues and Eigenvectors of a Static Matrix

CALL LASEIG(A,REEIG,AIEIG,E)

Computes the eigenvalues and eigenvectors of the 4 x 4 submatrix of a static 6 X 6 matrix A. The
routine has four arguments:

A Static matrix A4,

REEIG,AIEIG Two 6 vectors which receive the real and imaginary parts of the eigenvalues. The fifth
and sixth eigenvalues are set to one.

E 6 x 6 matrix which receives the eigenvectors. A real vector is stored in a single column.
A complex pair is stored in two consecutive columns, using one column for the real
part, and one for the imaginary part.

16.2.4 Purify Static Map

Transformation to normal form involves several steps of “purification”. This operation consists in
repeated conjugation with several maps to remove undesired terms successively. The four routines

CALL LASPU2(N,FP,FM,GP,GM,TP,TM)
CALL LASPUC(N,FP,FM,GP,GM,TP,TM)
CALL LASPUG(N,FP,FM,GP,GM,TP,TM)
CALL LASPU4(N,FP,FM,GP,GM,TP,TM)

72 CHAPTER 16. LIE-ALGEBRA MODULE “LA”

have the following action:

LASPU2 Removes coupling terms of second order by conjugation with the matrix of eigenvectors,
LASPUC Removes the chromatic terms of third order,

LASPUG Removes the geometric terms of third order,

LASPU4 Removes terms of fourth order,

The four routines must be called in the order listed. They all have the arguments

N Order of all maps involved (2 < N < 4, input),
FP,FM Map F to be purified (input),

GP,GM Result G of conjugation (output),

TP,TM Map 7 used for conjugation (output): G — 7F7 1.

A purified static map still contains some non-removable non-linearities. The call

CALL LASC2R(N,F,G)

transforms such a map to static resonance form. It has three arguments:

N Order of polynomials involved (2 < N < 4, input),
F Generators F of the purified static map F,
G Resonance coefficients G in a static resonance base.

CALL LASR2C(N,G,F)

is the opposite operation.

16.3 Operations on Dynamic Maps

A dynamic map is a map which may change the particle energy.

16.3.1 Eigenvalues and Eigenvectors of a 6 x 6 Matrix

CALL LADEIG(FM,REEIG,AIEIG,AM)

Computes the eigenvalues and eigenvectors of the 6 x 6 matrix A. The routine has four arguments:
A Dynamic matrix 4,
REEIG,AIEIG Two 6 vectors which receive the real and imaginary parts of the eigenvalues.

E 6 x 6 matrix which receives the eigenvectors. A real vector is stored in a single column.
A complex pair is stored in two consecutive columns, using one column for the real
part, and one for the imaginary part.

16.3. OPERATIONS ON DYNAMIC MAPS 73

16.3.2 Purifying Dynamic Map

Transformation to normal form involves several steps of “purification”. This operation consists in
repeated conjugation with several maps to remove undesired terms successively. The three routines

CALL LADPU2(N,FP,FM,GP,GM,TP,TM)
CALL LADPU3(N,FP,FM,GP,GM,TP,TM)
CALL LADPU4(N,FP,FM,GP,GM,TP,TM)

have the following action:

LADPU2 Removes coupling terms of second order by conjugation with the matrix of eigenvectors,
LADPU3 Removes the terms of third order,
LADPU4 Removes terms of fourth order,

The three routines must be called in the order listed. They all have the arguments

N Order N of all maps involved (2 < N < 4, input),
FP,FM Map F to be purified (input),

GP,GM Result G of conjugation (output),

TP,TM Map 7 used for conjugation (output): G — 7F7 1.

A purified dynamic map still contains some non-removable non-linearities. The call

CALL LADC2R(N,F,G)

transforms such a map to dynamic resonance form. It has three arguments:

N Order N of polynomials involved (2 < N < 4, input),
F Generators F of the purified dynamic map F,
G Resonance coefficients G in a dynamic resonance base.

CALL LADR2C(N,G,F)

is the opposite operation.

Chapter 17. Lie-Algebraic Maps “LM”

The “LM” module computes Lie-algebraic maps for single elements and performs elementary opera-

tions thereon. Note that not all routines keep a f; term. The algorithms used are documented in the
MAD Physicist’s Reference Manual.

Table 17.1: Routines in the LM module

Name | Purpose Section

LMARB | Transfer map for an arbitrary element (not yet implemented) -
LMBEND | Transfer map for a bend includeing fringe fields -
LMCANX | Prepare transfer map for symplectic tracking -
LMCAT | Concatenate two transfer maps 17.1

LMCLOR | Find fixed point (closed orbit) of a transfer map 17.2
LMCOPY | Copy a transfer map 17.3
LMCORR | Transfer map for an closed orbit corrector -

LMDPRT | Print transfer map in dynamic resonance form 17.9

LMDRF | Transfer map for a drift space -
LMDSP1 | Transfer map for a misalignment at element entrance -
LMDSP2 | Transfer map for a misalignment at element exit -

LMELEM | Switch routine to track through any element 17.4
LMEXPO | Calculate Lie transformation of a polynomial 17.5
LMFIXP | Find fixed point of a static map 17.6

LMFRG1 | Transfer map for a fringe field at dipole entrance -
LMFRG2 | Transfer map for a fringe field at dipole exit -
LMG1MV | Move g; part over a Lie operator -

LMINV | Invert a transfer map 17.7
LMMAP | Switch routine to compute transfer map for any element 17.7.1
LMMASK | Mask out terms for given orders 17.8

LMMULT | Transfer map for a thin multipole -
LMNEWT | Non-linear part of symplectic tracking -
LMOCT | Transfer map for a long octupole -

LMONE | Return identity map 17.8.1
LMPRNT | Print transfer map matrix and generators 17.9
LMQUAD | Transfer map for a long quadrupole -

LMREFL | Reflect transfer map 17.10
LMREVF | Reverse factorization of a map 17.11
LMRF Transfer map for an RF cavity of zero length -

LMSAND | Conjugate transfer map with another transfer map 17.12

LMSECT | Transfer map for a sector dipole without fringe fields -
LMSEP | Transfer map for an electrostatic separator -
LMSEXT | Transfer map for a long sextupole -
LMSOL | Transfer map for a long solenoid without fringe fields -

LMSPRT | Print transfer map in static resonance form 17.9
LMSROT | Transfer map for a rotation about the s-axis -
LMTILT | Conjugate transfer map with rotation around s-axis 17.13
LMTRAK | Track orbits by the symplectic method -
LMUSER | Transfer map for a user-define element 17.13.1

LMYROT | Transfer map for a rotation about the y-axis -

74

17.1. CONCATENATE TWO MAPS 75

17.1 Concatenate two Maps

CALL LMCAT(N,FP,FM,GP,GM,HP, HM)

concatenates two Lie-algebraic maps F and G and returns the resulting map H. It takes five input
arguments:

N Order N of all maps involved (2 < N < 6).
FP,FM Generators and matrix of the first map F in beam order.
GP,GM Generators and matrix of the second map G in beam order.

It returns two arguments:
HP ,HM Generators and matrix of the resulting map .

LMCAT keeps displacement terms, if present.

17.2 Find Closed Orbit and Map about the Closed Orbit

CALL LMCLOR(LINE,N,FP,FM,DELTAT,DELTAP,HP HM,0RBIT)

computes the first-order fixed point, i. e. the closed orbit of a map F. It returns the orbit for the
fixed point and the map H relative to the fixed point. It has five input arguments:

LINE Name of the beam line having the map F as CHARACTER* (MCNAM).
N Order of the map F.

FP,FM Generators FP and matrix FM of the map F.

DELTAP (Average) relative energy error desired for the fixed point.

and returns four arguments:

DELTAT Path length difference for the fixed point, compared to reference particle.
HP ,HM Generators HP and matrix HM of the map H.
ORBIT Orbit for the fixed point.

17.3 Copy a Map

CALL LMCOPY(N,FP,FM,GP,GM)

Copies a map F, into a map G. It has three input arguments:
N Order of the map.

FP,FM Map F to be copied.

and two output arguments:

GP,GM Copied map G.

76 CHAPTER 17. LIE-ALGEBRAIC MAPS “LM”

17.4 Track with the Generating Function Method

CALL LMELEM(ITURN,NORD,NSUP,IPOS,SUML,TRACK,NUMBER,NTRACK)

tracks a set of orbits through any element using the symplectic tracking method. It assumes that
UTBEAM and UTELEM have been called beforehand to set the relevant pointers in common REFER.

ITURN Turn number, used for messages about lost particles (input).

NORD Order to be used for the transfer map(input).

ISUP Superperiod number, used for messages about lost particles (input).
IPOS Position number in the machine, used for messages(input).

SUML Accumulated length, updated by the routine (input/output)

TRACK Orbit positions to be updated (input/output).

NUMBER List of orbit numbers (input/output).

NTRACK Number of surviving orbits (input/output).

The orbits are compacted when an orbit is lost. Thus the n‘* orbit is stored in TRACK(*,%), and its
number is found in NUMBER(2).

17.5 Apply Exponential of a Lie operator to a Polynomial

CALL LMEXPO(FP,IFPORD,GP,IARORD,HP,IMXORD)

applies the Lie transformation for a homogeneous polynomial F, to a set of generators {G;} and
returns the resulting set {Hy}:

Hy = Ze:F":Gi, terms of order k.

It has five input arguments:

FP Coefficients of the homogeneous polynomial F,, of order n.

IFPORD Order n of F,.

GP The coeflicients of the set of homogeneous polynomials {G,}.

TARORD If positive, {G;} contains only order TARORD. If negative, {G;} contains all polynomials

up to order -IARORD.
IMXORD Order at which to truncate the result.
The result is returned in one argument:

HP Set of homogeneous polynomials { Hy } generated.

17.6. FIND FIXED POINT OF A STATIC MAP AS A FUNCTION OF § 77

17.6 Find Fixed Point of a Static Map as a Function of

CALL LMFIXP(FP,FM,AP,AM,TP,TM)

transforms an order-4 map F by conjugation with a map 7: A — 7F7 ' such that 7 contains the
first through third order dispersion of F, and A is the map about the fixed point. There are two input
arguments:

FP,FM Fourth-order map F.
and four output arguments:

AP, AM Map A about the fixed point.

TP,TM Transformation 7 to the fixed point.

17.7 Invert Lie-algebraic Map

CALL LMINV(N,FP,FM,GP,GM)

inverts the map F of order N and returns the result in G.

17.7.1 Return Transfer Map for Any Element

CALL LMMAP(N,EL,FP,FM)

expects that the relevant pointers have been set by the calling routine:

LCELM The data bank for the current element (must be non-zero).

LCALI Pointer to misalignment bank (may be zero).

LCFLD Pointer to field error bank (may be zero).

LCCOM Pointer to corrector or monitor bank (must be non-zero for a corrector or monitor,

when an orbit correction has been made).
It extracts the relevant data and returns:

EL The length of the current element,

FP,FM Map F for the current element.

17.8 Wipe out Monomial Coefficients as Specified

CALL LMMASK(N,WIPE,FP,FM,GP,GM)

wipes out selected orders in the map F. It has four input arguments:

N Order of F.

WIPE Logical array of dimension at least N. If WIPE(I) is .FALSE., the terms of order I will
be copied from F to G, otherwise these terms will be cleared in G.

FP,FM Input map F.
and two output arguments:

GP,GM Map G resulting from wiping out the selected orders.

78 CHAPTER 17. LIE-ALGEBRAIC MAPS “LM”

17.8.1 Identity Map

CALL LMONE(N,FP,FM)

Sets the map F to the identity map.

17.9 Print Representations of Lie-algebraic Maps

CALL LMPRNT(IUNIT,N,FP,FM)

prints the map F of order N on logical unit TUNIT.

CALL LMDPRT(IUNIT,N,FP)

prints the dynamic resonance generators of a map computed by LADC2R. It has three input parame-
ters:

TUNIT Logical unit number to receive the output.
N Maximum order of the terms to be printed.
FP Array containing the dynamic resonance generators.

CALL LMSPRT(IUNIT,N,FP)

prints the static resonance generators of a map computed by LASC2R. It has three input parameters:

TUNIT Logical unit number to receive the output.
N Maximum order of the terms to be printed.
FP Array containing the static resonance generators.

17.10 Reflect a Map

CALL LMREFL(FP,FM,N,GP,GM)

Reflects the map F of order N and returns the result in G. Reflection is equivalent to running through
the elements producing F in inverse (reflected) order.

17.11 Reverse the Order of Factorization

CALL LMREVF(FP,FM,N,GP,GM)

Reverses the order of factorization of the map F (order N), and returns the result in G.

17.12 Conjugate a Map

CALL LMSAND(N,GP,GM,TP,TM,AP,AM)

Conjugates the map G with the map 7: A — TGT 1.

17.13. MODIFY MAP FOR ROTATED ELEMENTS 79

17.13 Modify Map for Rotated Elements

CALL LMTILT(N,TILT,FP,FM)

Conjugates the map F with the map R representing a rotation about the s-axis by the angle TILT (in
rads): 7 «— RFR ™.

17.13.1 Map for User-Defined Element

CALL LMUSER(N,ISP,EL,FP,FM)

may be replaced by the user to implement tracking through user-defined elements. It should take the
element parameters from the element bank, pointed at by LCELM (Section 3.1).

N Order of the map desired (input).
ISP Subprocess code for the element (input).
EL Element length (output).

FP,FM Computed transfer map (output).

Chapter 18. Beam Lines “LN”

The LN module provides methods for decoding and accessing beam lines, beam lists, and sequences.

Table 18.1: Routines in the LN module

Name | Purpose Section

LNBEAM | Command routine for LINE command -
LNCHCK | Check that a valid USE command was seen 18.1
LNDROP | Delete a beam line expansion and anonymous drifts which it may con- -
tain due to a SEQUENCE
LNDUMP | Write a LINE or LIST definition on the ECHO file 18.2
LNEBGN | Command routine for SEQEDIT command -
LNECYC | Command routine for CYCLE command -
LNEINS | Command routine for INSTALL command -
LNEMOV | Command routine for MOVE command -
LNEREF | Command routine for REFLECT command -
LNEREM | Command routine for REMOVE command -
LNFORM | Fill in formal arguments for a LINE to be expanded -
LNINIT | Called by AAINIT to initialize LN module -
LNLIST | Command routine for LIST command -
LNMAIN | Switch routine for LN module -
LNMAKE | Book a LINE bank -
LNMARK | Mark maps for working beam line as obsolete -
LNPMOD | Propagater modification flags for LINE and LUMP -
LNREFE | Build line expansiong from a beam line reference 18.3
LNSEQ Command routine for SEQUENCE command -
LNXLST | Expand beam line sequence, called by LNXPND -
LNXPND | Get next item of replacement list, called by LNREFE -
LNXPUT | Add element to line expansion -
LNXRES | Reset replacement lists, called by LNXPND -
LNXSEQ | Expand beam line sequence, called by LNXPND -

When a SEQUENCE is decoded, MAD allocates new storage only for elements which have new
attributes with respect to the class object. Otherwise it duplicates the pointer to the class object.
Both the class and the copy are then marked as an alias by setting the alias bit MXALS. The class
object is also marked as a class by setting the class bit MXCLS.

18.1 Check for Valid USE Command

CALL LNCHCK(COMAND,EFLAG)

checks that a working beam line has been set, and that it has not been deleted due to subsequent data
changes. It has two arguments:

COMAND A character string containing the current command name (input).

EFLAG Logical error flag (output).

80

18.2. DUMP BEAM LINE DEFINITION 81

18.2 Dump Beam Line Definition

CALL LNDUMP(LLINE,LABEL)

writes a beam line definition on the ECHO file, using the arguments
LLINE Pointer to the definition to be dumped.

LABEL Name of the definition to be dumped.

18.3 Expand a Beam Line Reference

CALL LNREFE(LBANK,IBIAS,LSEQ,LSUP,ISUP)

Builds an expansion for a given beam line reference. The banks produced are:

LSDIR Directory indices for elements and lines belonging to the expansion.
LSFLG Flag words (Table 2.18).
LSNUM Element numbers (Table 2.19).

The other banks are built by other routines as required. The arguments of LNREFE are

LBANK Pointer to the command bank supporting the beam line reference bank (input).

IBIAS Attribute number of the beam line reference (input).

LSEQ Pointer to the new beam line expansion tree (output). For the working beam line this
is LCSEQ.

LSUP Pointer to the bank which will support the expansion tree (input). For the working

beam line this is LROOT.

ISUP Bias in the supporting bank for the pointer to the expansion tree (input). For the
working beam line this is -MCSEQ, thus the link LQ(LROOT-MCSEQ) points to the working
beam line.

Chapter 19. Matching Module “MT”

The MT module is the matching module. The methods are based on the MINUIT program, written by
F. James [16]. There is also a method LMDIF lifted from the DIMAD program, originally written at
SLAC by B. S. Garbov et al.

Table 19.1: Routines in the MT module

Name | Purpose Section
MTACON | Add constraint to a position 19.1
MTBTIN | Find periodic solution of linear lattice functions -
MTBTTK | Track linear lattice functions trough an element -
MTCELL | Command routine for CELL command -
MTCOND | Evaluate matching conditions, internal routine for MTEND and MTFCN -
MTCONS | Command routine for CONSTRAINT command -
MTCPLE | Command routine for COUPLE command -
MTDERI | Find first and second derivatives of penalty function -
MTEND | Command routine for END command 19.1
MTFCN | Compute matching functions 19.1
MTFIX | Command routine for FIX command -
MTGETI | Get internal parameter values -
MTHESS | Compute covariance matrix -
MTINIT | Initialize MT module -
MTLINE | Find minimum along a line in parameter space -
MTLMDF | Command routine for LMDIF command -
MTMAIN | Switch routine for MT module 19.2
MTMIGR | Command routine for MIGRAD command -
MTMIG1 | Minimize by MIGRAD method -
MTMTCH | Command routine for MATCH command -
MTPINI | Initialize calculation of target functions 19.1
MTPMOD | Delete precomputed transfer maps after parameter change -
MTPRNT | Print-out for matching -
MTPSDF | Ensure that covariance matrix is positive definite -
MTPUTI | Put internal parameter values -
MTRAZZ | Internal routine for MTSIM1 -
MTRMAT | Command routine for RMATRIX command -
MTSIMP | Command routine for SIMPLEX command -
MTSIM1 | Minimize by SIMPLEX method -
MTTMAT | Command routine for TMATRIX command -
MTIVARY | Command routine for VARY command -
MTVFND | Look up a variable in the variable table -
MIWEIG | Command routine for WEIGHT command -
FDJAC | Internal routine for LMDIF -
LMDIF | Minimize by LMDIF method -
LMPAR | Internal routine for LMDIF -

82

19.1. CHANGES REQUIRED TO ADD NEW CONSTRAINT TYPES 83

19.1 Changes Required to Add New Constraint Types

A new constraint type can easily be added to the present matching module. First, one has to link
a command routine to decode the constraint to the switch routine MTMAIN. The command routine
must link the constraint conditions to the working beam line by calling MTACON (possibly selecting the
places via ENSRNG and/or ENSTYP. The actual evaluation of the constraint must be added to MTCOND.
If the condition requires initialization, like the LINE=1ine condition for the CONSTRAINT command,
this initialization must be added to MTPINT.

19.2 Changes Required to Add New Matching Methods

The command routine to execute a new matching method must be linked to the switch routine MTMAIN.
It can get access to the target functions via

CALL MTFCN(NF,NX,X,FVEC,IFLAG)

with the arguments

NF Number of target functions (input).

NX Number of variable parameters (input).

X Values of variable parameters (input). This must be dimensioned at NX.

FVEC Values of the target functions (output). This must be dimensioned at NF.

IFLAG Integer error flag (output). If this value is non-zero upon return, the matching method

should discard this point in parameter space as illegal.

Chapter 20. Matrix Utilities “MG66”’

The M66 module contains utilities for operations on 6 X 6 matrices.

Table 20.1: Routines in the M66 module

Name | Purpose Section
M66ADD | Add two matrices 20.1
M66BYV | Multiply matrix by vector 20.2
M66CPY | Copy a matrix 20.3
M66DIV | Multiply a matrix by inverse of another 20.4
M66EXP | Exponentiate a matrix 20.5
M66INV | Invert a symplectic matrix 20.6
M66MAK | Build matrix for F, polynomial 20.7
M66MPY | Multiply two matrices 20.9
M66MTR | Multiply matrix by transpose of another matrix 20.8
M66NRM | Return norm of a matrix 20.10
M660NE | Build identity matrix 20.11
M66PRT | Print a matrix 20.12
M66REF | Reflect a symplectic matrix 20.13
M66SCL | Scale a matrix 20.14
M66STA | Determine if matrix is static 20.15
M66SUB | Subtract two matrices 20.16
M66TP | Transpose a matrix 20.17
M66TRM | Multiply matrix by transpose of another 20.18
M66ZR0 | Set a matrix to zero 20.19

20.1 Add two Matrices

CALL M66ADD(A,B,C)

adds two 6 x 6 matrices: C «— A + B.

A First summand 4 (input).
B Second summand B (input).
C Sum C (output).

20.2 Multiply Matrix by Vector

CALL M66BYV(A,B,C)

multiplies a 6 X 6 matrix A by a vector B: C' — AB.

A Matrix A (input).
B Vector B (input).
C Result vector C (output).

84

20.3. COPY A MATRIX 85

20.3 Copy a Matrix

CALL M66CPY(A,B)

copies a 6 X 6 matrix: B — A.
A Matrix A to be copied (input).

B Copied matrix B (output).

20.4 “Divide” two Matrices

CALL M66DIV(A,B,C,EFLAG)

multiplies a general 6 x 6 matrix by the inverse of another one: C — B~'A. If B cannot be inverted,
EFLAG is returned as .TRUE..

A Matrix A (input).

B Matrix B (input).

C Result C' (output).

EFLAG Logical error flag (output).

20.5 Exponentiate a Matrix

CALL M66EXP(A,B,EFLAG)

exponentiates a matrix: M — e’°. The matrix A must be built by M66MAK, that is the equation
[F,Z] = AZ must be true for some quadratic homogeneous polynomial F.

A Input matrix A.
M Output matrix B.
EFLAG Logical error flag (output).

20.6 Invert a Symplectic Matrix

CALL M66INV(A,B)

inverts a symplectic 6 x 6 matrix: B «— A~'.
A Symplectic matrix A to be inverted (input).

B Inverted matrix B (output).

86 CHAPTER 20. MATRIX UTILITIES “M66”

20.7 Matrix for Poisson Bracket with Second-Order Polynomial

CALL M66MAK(F,A)

returns the matrix A such that AZ = [F, Z], where F is a quadratic homogeneous polynomial in phase
space coordinates.

F Second-order polynomial F' (input), stored in the order shown in Appendix C.

A Result matrix A.

20.8 Multiply Two Matrices

CALL M66MTR(A,B,C)

multiplies two 6 X 6 matrices: C' — AB.

A First factor A (input).
B Second factor B (input).
C Product C' (output).

20.9 Multiply Matrix by Transpose of Another Matrix

CALL M66MPY(A,B,C)

multiplies a matrix A by the transpose of another matrix B: C' — ABT.

A First factor A (input).
B Second factor B to be transposed (input).
C Product C' (output).

20.10 Return Norm of a Matrix

X = M66NRM(A)

Returns the norm of the 6 X 6 matrix 4 in X.

A Input matrix A.

20.11 Build Identity Matrix

CALL M660NE(A)

sets the matrix A to the 6 x 6 identity matrix.

A Matrix A to be set to identity.

20.12. PRINT A MATRIX 87

20.12 Print a Matrix

CALL M66PRT(A,IUNIT)

prints the 6 X 6 matrix A on logical unit IUNIT.
A Matrix A to be printed (input).

IUNIT Logical unit number to receive output (input).

20.13 Reflect a Symplectic Matrix

CALL M66REF(A,B)

reflects the symplectic 6 X 6 matrix A and returns the result in B. The result is equivalent to reflecting
the beam line which produced the transfer matrix A.

A Symplectic input matrix A.

B Reflected matrix B (output).

20.14 Scale a Matrix

CALL M66SCL(S,A,B)

multiplies a 6 X 6 matrix A by a scalar §: B — §SA.

S Scalar factor S (input).
A Matrix factor A (input).
B Product B (output).

20.15 Determine if a Matrix is Static

SFLAG = M66STA(A)

sets SFLAG to .TRUE. if the matrix A does not change the particle energy.

A Input matrix A.

20.16 Subtract two Matrices

CALL M66SUB(A,B,C)

subtracts two 6 X 6 matrices: ¢' — A — B.
A First term A (input).
B Second term B (input).

C Difference C' (output).

88 CHAPTER 20. MATRIX UTILITIES “M66”

20.17 Transpose a Matrix

CALL M66TP(A,B)

transposes a 6 X 6 matrix: B «— AT.
A Input matrix A.

B Transposed matrix B (output).

20.18 Multiply a Matrix by the Transpose of Another One

CALL M66TRM(A,B,C)

transposes a 6 X 6 matrix and multiplies it with another one: C' — AT B.

A First factor A to be transposed (input).
B Second factor B (input).
C Product C' (output).

20.19 Set a Matrix to Zero

CALL M66ZR0O(A)

sets a 6 X 6 matrix to zero: 4 — 0.

A Matrix A to be set to zero.

Chapter 21. Polynomial Algebra “PA”

The PA module contains utilities for algebra on polynomials of three and six variables. Polynomials
are stored in arrays, with the coefficients ordered as in Appendix C.

Table 21.1: Routines in the PA module

Name | Purpose Section
General Routines
PAINIT | Initialize complete package 21.1
PAXIND | Internal routine to compute indexing -
Polynomials in three variables
PA3DIF | Differentiate polynomial 21.2
PA3INTI | Initialize -
Polynomials in six variables
PAGADD | Add two polynomials 21.3
PABBRK | Poisson bracket of two polynomials 21.4
PA6CLR | Clear a polynomial to zero 21.5
PA6CPY | Copy a polynomial 21.6
PA6DIF | Differentiate polynomial 21.7
PAGINI | Initialize -
PAGNRM | Find norm of a polynomial 21.8
PA6PRD | Product of two polynomials 21.9
PA6PRT | Print a polynomial 21.10
PABSCL | Scale a polynomial 21.11
PA6SUB | Subtract two polynomials 21.12
PABSUM | Scaled sum of two polynomials 21.13
PABVAL | Value of a polynomial 21.14
PA6XFM | Transform arguments of a polynomial linearly 21.15

21.1 Initialize Polynomial Package

CALL PAINIT(N)

initializes the polynomial package for a given order N. It sets up ZEBRA banks with various tables.

21.2 Derive Polynomial in Three Variables

CALL PA3DIF(F,I,N,G)

derives a polynomial in three variables with respect to one variable: G — 0F/0z;.

F Coefficients of the polynomial F' (input).
I Variable ¢ with respect to which to differentiate (input).
N Order N of the polynomial (input):

N > 0: Homogeneous polynomial of order V.
N < 0: All orders up to N.

G Coeflicients for the derivative G, of order N — 1 (output).

89

90 CHAPTER 21. POLYNOMIAL ALGEBRA “PA”

21.3 Add Two Polynomials in Six Variables

CALL PA6ADD(F,G,N,H)

adds two polynomials in six variables: H «— F + G.

F Coeflicients for the first term (input).
G Coeflicients for the second term (input).
N Order N of the polynomials (input):

N > 0: Homogeneous polynomials of order N.

N < 0: All orders up to N.

H Coeflicients for the sum (output).

21.4 Poisson Bracket of Two Polynomials in Six Variables

CALL PA6BRK(F,NF,G,NG,H)

Computes the Poisson bracket of two homogeneous polynomials in six variables: H — [F, G].

F Coeflicients for the first operand F' (input).

NF Order N; of the polynomial F' (input).

G Coeflicients for the second operand G (input).

NORD Order N, of the polynomial G (input).

H Coeflicients for the product H of order N; + N, — 2 (output).

21.5 Clear a Polynomial in Six Variables

CALL PAGBCLR(F,N)

clears a polynomials in six variables: F < 0.
F Coeflicients for the result (output).
N Order N of the polynomial (input):

N > 0: Homogeneous polynomial of order V.

N < 0: All orders up to N.

21.6. COPY A POLYNOMIAL IN SIX VARIABLES 91

21.6 Copy a Polynomial in Six Variables

CALL PA6CPY(F,N,G)

copies a polynomials in six variables: G — F.

F Coeflicients for the source (input).
N Order N of the polynomial (input):

N > 0: Homogeneous polynomial of order V.
N < 0: All orders up to N.

G Coeflicients for the target (output).

21.7 Differentiate Polynomial in Six Variables

CALL PA6DIF(F,I,N,G)

derives a polynomial in six variables with respect to one variable: G — 0F/8z,.

F Coefficients of the polynomial F' (input).
I Variable I with respect to which to differentiate (input).
N Order N of the polynomial (input):

N > 0: Homogeneous polynomial of order V.
N < 0: All orders up to N.

G Coeflicients for the derivative G, of order N — 1 (output).

21.8 Find Norm of a Polynomial in Six Variables

X = PABNRM(F,N)

returns the norm of a polynomials in six variables: X — ||F||.

F Coefficients for the polynomial (input).
NF Order N; of the polynomial F' (input).

The norm of the polynomial is defined as the sum of the absolute values of its coefficients.

21.9 Multiply Two Polynomials in Six Variables

CALL PA6PRD(F,NF,G,NG,H)

subtracts two homogeneous polynomials in six variables: H — F@.

F Coeflicients for the first factor (input).
NF Order N; of the polynomial F' (input).
G Coeflicients for the second factor (input).
NG Order N, of the polynomial G (input).

H Coeflicients for the product of order N; + N, (output).

92 CHAPTER 21. POLYNOMIAL ALGEBRA “PA”

21.10 Print a Polynomial in Six Variables

CALL PA6PRT(F,N,IUNIT)

prints a polynomial in six variables from order one to V.

F Coefficients for the polynomial (input).
N Order N of the polynomial (input).
IUNIT Logical unit to receive output (input).

21.11 Scale a Polynomial in Six Variables

CALL PA6SCL(S,F,N,G)

scales a polynomial in six variables: G — SF.

S Scalar factor (input).
F Coefficients for polynomial to be scaled (input).
N Order N of the polynomial (input):

N > 0: Homogeneous polynomial of order V.

N < 0: All orders up to N.

G Coeflicients for scaled result G (output).

21.12 Subtract Two Polynomials in Six Variables

CALL PA6SUB(F,G,N,H)

subtracts two polynomials in six variables: H «— F — G.

F Coeflicients for the first term (input).
G Coeflicients for the second term (input).
N Order N of the polynomials (input):

N > 0: Homogeneous polynomials of order N.

N < 0: All orders up to N.

H Coeflicients for the difference H (output).

21.13. SCALED SUM OF TWO POLYNOMIALS IN SIX VARIABLES 93

21.13 Scaled Sum of Two Polynomials in Six Variables

CALL PA6SUM(S,F,N,G)

scales a polynomial in six variables and adds it to another one: G — G + SF.

S Scalar factor (input).
F Coefficients for polynomial to be scaled (input).
N Order N of the polynomials (input):

N > 0: Homogeneous polynomials of order N.

N < 0: All orders up to N.

G Coeflicients for the accumulated sum G (output).

21.14 Value of a Polynomial in Six Variables

V = PAGVAL(F,N,Z)

returns the value of a polynomial in six variables: V — F(Z).

F Coefficients for the polynomial (input).
N Order N of the polynomial (input).
Z A phase-space vector (input).

21.15 Transform Arguments of a Polynomial in Six Variables

CALL PA6XFM(F,N,A,G)

transforms the arguments of a polynomial in six variables by a matrix: G(Z) — F(AZ).

F Coefficients for the polynomial (input).
N Order N of the polynomial (input).
A Matrix for transformation (input).

G Coefficients for the transformed polynomial G (output).

Chapter 22. Plot Module “PL”

The PL module implements plot commands.

Table 22.1: Routines in the PL module

Name | Purpose Section
PLARWE | Tune plot (tune resonance lines) 22.1
PLCOLI | Enter variable formats, biasses in banks -
PLCURV | Plot one curve -
PLDUMP | Dump the plot bank (debugging) 22.2
PLELMA | Return 4 X 6 element matrix -
PLGACN | Position curve annotation -
PLGARW | Code tune plot constraints in Polish notation 22.3
PLGAXN | Return compound vertical axis annotation -
PLGCMD | Return unpacked PLOT command parameters -
PLGETN | Get variable names for labels etc. -
PLGTBS | Return table information such as biasses -

PLINTP | Interpolate variables plotted against s 22.4
PLMAIN IﬂotInodukzmﬂry(PLOT,RESPLOT,SETPLOT) -
PLPLOT | Plot one complete picture 22.5
PLPREP | Prepare plot banks for routine PLPLOT 22.6
PLPTIT | Prepare picture title -
PLQCON | Check user constraints on tune plot 22.7

PLSCHM | Plot machine schema (magnet symbols) -
PLPVAL | Calculate composite plot variables -

22.1 Make Tune Plot

CALL PLARWE (IBK, ACTWIN)

Makes a plot of tune resonance lines

IBK Array containing: the number of superperiods, the number of constraints N, the N
constraints: minimum, maximum, step, length L, expression in Polish notation of
length L, coded as 100001=“+", 100002=“—", 100003="*x", 100004=*/", 100005=KX,
100006=KY, 100007=KS, all other simple integers.

ACTWIN Active user window.

22.2 Dump Plot Bank

CALL PLDUMP

Dumps the contents of the plot bank.

22.3 Tune Plot Constraints

CALL PLGARW (MXB, MXC, QC, IR, NTOT, IBK, IERR)

94

22.4. INTERPOLATE TWISS VARIABLES

Returns tune plot constraints in inverse Polish notation:

MXB

MXC

QcC

IR

NTOT

IBK

IERR

Maximum length of output array.
Maximum number of constraints.
Constraints as read.

Lower limit, upper limit, step of loop.
Length occupied in output array.
Output array (format: see 22.1).

Error flag: 0=0K, else wrong expression.

22.4 Interpolate Twiss Variables

CALL PLINTP(IEP, NPNT, NMAX, STEP, VMIN, VMAX, IERR)

Interpolates variables plotted against s.

IEP

NPNT

NMAX

STEP

VMIN

VMAX

IERR

Row number of first element.

Number of points

Maximum number of points that should possibly appear.
Maximum distance between two successive horizontal values.
Minima for 4 axes.

Maxima for 4 axes.

Integer error flag: 0=0K, else wrong.

22.5 Plot one Complete Picture

CALL PLPLOT

95

Plots one complete picture entirely from the information contained in the plot bank structure PLMAIN.
The format of this structure is given in the routine header of PLPLOT.

22.6 Prepare one Complete Picture

CALL PLPREP

Fills one complete picture into the plot bank structure PLMAIN. The format of this structure is given
in the routine header of PLPLOT.

96 CHAPTER 22. PLOT MODULE “PL”

22.7 Check Tune Plot Constraints

CALL PLQCON (KX, KY, KXYS, IBK, ISELCT, IERR)

Checks the constraints on the tune resonances to be plotted

KX Index of K, in KXYS.

KY Index of K, in KXYS.

HXYS Array containing K, = KXYS(KX), K, = KXYS(KY), K, = KXYS(3).

IBK Array containing constraints in inverse Polish notation (format: see 22.1).
ISELCT Output flag: 1 if constraint is passed, else 0.

IERR Integer error flag: 0=0K, else wrong.

Chapter 23. Print Utilities “PR”

The PR module contains the utilities for printing which may be useful for consistent page layout.

Table 23.1: Routines in the PR module

Name | Purpose Section
PRLINE | Print line of dashes 23.1
PRPAGE | Print page header 23.2

23.1 Print a Line of Dashes over the Page

CALL PRLINE(IUNIT)

prints a line of 130 dashes across the page on logical unit TUNIT.

23.2 Print page Header

CALL PRPAGE(IUNIT)

prints the page header line, with title and version number, on logical unit TUNIT.

97

Chapter 24. Low-Level Reading Routines “RD?”

The RD module contains the low-level decoding routines. These are not designed to be called directly,
but to act as subroutines of the DC module.

Table 24.1: Routines in the RD module

Name | Purpose Section

RDFAIL | Count fatal error and mark place on input line -
RDFIND | Skip to next character occurring in a string -
RDFORM | Mark delimiters of formal argument list -
RDINIT | Initialize RD module -
RDINT | Read an integer value -
RDLINE | Read a card image -
RDLOGC | Read a logical value -
RDMARK | Mark place on input line -
RDNUMB | Read a floating point value -
RDSKIP | Skip characters in a string -
RDSTAT | Read a complete statement into statement buffer -
RDSTRG | Read a string value -
RDTEST | Test and skip a character -
RDWARN | Count warning message and mark place on input line -
RDWORD | Read an alphanumeric string -

98

Chapter 25. Survey Module “SU”

The SU module performs all actions related to SURVEY. Some routines are provided for use in misalign-
ment operations.

Table 25.1: Routines in the SU module

Name | Purpose Section

SUANGL | Convert rotation matrix to three angles -
SUCOPY | Copy displacement and rotation matrix -
SUELEM | Return displacement and rotation matrix for an element 25.1
SUHEAD | Print survey header -
SUIDEN | Set displacement and rotation matrix to identity transform -
SULINE | Return displacement and rotation matrix for a line 25.2
SUMAIN | Switch routine for SU module -
SUMTRX | Build rotation matrix from three angles -
SURVEY | Command routine for SURVEY command -

SUTRAN | Transform displacement and rotation matrix for rotation 25.3
SUTRAK | Advance displacement and rotation matrix through element -
SUUSER | Return displacement and rotation matrix for user-defined element 25.4

25.1 Displacement and Rotation for an Element

CALL SUELEM(ELEN,ALEN,V,W)

returns survey information about the current element, pointed at by LCELM.

ELEN Element length, measured as the sagitta (output).

ALEN Element length, measured as the arc length (output).

v Three-dimensional displacement (output).

W Rotation, represented as a 3-dimensional orthogonal matrix (output).

25.2 Displacement and Rotation for a Beam Line

CALL SULINE(IPOS,ELEN,ALEN,V,W)

returns survey information about the line ending at a given position in the working beam line.

IPOS Position counter in the working beam line, where the line in question ends (input).
ELEN Line length, measured as the sagitta (output).

ALEN Line length, measured as the arc length (output).

v Three-dimensional displacement (output).

W Rotation, represented as a 3-dimensional orthogonal matrix (output).

99

100 CHAPTER 25. SURVEY MODULE “SU”

25.3 Transform Displacement and Rotation with a Rotation

CALL SUTRAN(W,V,WE)

transforms the rotation and the displacement of the element exit with respect to the element entrance
from one reference to another.

W,V Rotation matrix W and the displacement vector V for the misalignment of an element.
WE Rotation W, of the exit system with respect to entrance system.

Upon entry to the routine, W and V must be related to the element entrance. Upen exit the routine
returns the same quantities related to the element exit:

W2 - WETW1WE, V2 - Wg‘fl

25.4 Displacement and Rotation for User-Defined Elements

CALL SUUSER(ELEN,ALEN,V,W)

returns survey information about user-defined elements. It should take the element parameters from
the element bank, pointed at by LCELM (Section 3.1).

ELEN Element length, measured as the sagitta (output).
ALEN Element length, measured as the arc length (output).
v Three-dimensional displacement (output).

W Rotation, represented as a 3-dimensional orthogonal matrix (output).

Chapter 26. Formatted write routines “SV?”

The SV module contains the command routine for the HELP, SHOW, and SAVE commands. Some of the
routines may also be of use for building ad hoc saving commands.

Table 26.1: Routines in the SV module
Name | Purpose Section
SVATTR | Write one attribute of a command -
SVBANK | Write complete command -
SVBEGN | Begin new line on SAVE file -
SVCONT | Begin continuation line on SAVE file -
SVDICT | Write complete keyword definition -
SVDUMP | Write out last line of a command -
SVEXPR | Write arithmetic expression in encoded form -
SVHELP | Command routine for HELP command -
SVINT | Write integer value -
SVLINE | Write LINE command -
SVLIST | Write beam line list -
SVLITT | Write litteral string -
SVMAIN | Command routine for SAVE command -
SVNAME | Write alphanumeric string -
SVPARM | Write PARAMETER command -
SVREAL | Write real value -
SVSEQ Write SEQUENCE command -
SVSHOW | Command routine for SHOW command -
SVSUBR | Write SUBROUTINE definition -
SVSTRG | Write quoted string -
SVVREF | Write variable reference -

101

Chapter 27. Dynamic Table Handler “TB”

The “TB” module contains routines to read and write dynamic tables of virtually unlimited size. On
Cray computers the tables reside in the SSD (Solid State Device), on other computers on direct-access
disk files. The tables may be read and written as a whole as TFS files [6].

Table 27.1: Routines in the TB module
Name | Purpose Section
TBBUFF | Book table buffers -
TBCHCK | Check table pointer for validity -

TBCLOS | Close a dynamic table 27.1
TBCOL | Find named column in table 27.2
TBCREA | Create new dynamic table 27.3
TBDATA | Decode table field -

TBDROP | Delete a dynamic table 27.4

TBDUMP | Dump tables to backing store -
TBFILE | Open direct-access file for table manager -
TBFORM | Decode table descriptor format -
TBGDSC | Retrieve table descriptor 27.5
TBGET | Low-level table read -
TBINIT | Initialize table handler -
TBINPT | Simulate direct-access read -
TBLIST | Command routine for TABLE command -
TBNAME | Decode TFS string -

TBOPEN | Open existing dynamic table 27.6
TBOUTP | Simulate direct-access write -
TBPDSC | Add descriptor to table 27.7

TBPUT Low-level table write -
TBREAD | Read table buffer -

TBRTFS | Read dynamic table in ASCII TFS format 27.8
TBSEG | Set table segment 27.9
TBSET | Set table row 27.10
TBWTFS | Write dynamic table in ASCII TFS format 27.11

TBWRIT | Write table buffer -

Dynamic tables are organized in three dimensions:

column: Identified by name.
row: Identified by number.

segment: Identified by number.

As an example consider the table of lattice functions. Each column contains one given lattice function,
Each row refers to one position in the machine, and each segment corresponds to one value of the
€nergy error.

All items in a given column have the same data format, identified by its ZEBRA data type code
(Table 2.1). Each table row resides in a ZEBRA buffer bank. At least one buffer bank must be
allocated; for better efficiency a larger number may be allocated if possible. However, one can never
allocate more buffers than available from the ZEBRA store. If more than one buffer bank is available,
these are used in a circular way. Two buffers allow for example to access a table sequentially and to
have two consecutive rows in store at any time.

102

27.1. CLOSE A DYNAMIC TABLE 103

Use of a table requires the following steps:
1. Create the table (TBCREA, Section 27.3).
2. For each segment of the table, set the segment number (TBSEG, Section 27.9).

3. For each row within the segment, set the row number (TBSET, Section 27.10). The user must
provide a flag value to TBSET:

1 (read); The buffer is filled by TBSET, but it will not be written when reused.
2 (update): The buffer is filled by TBSET, and written to backing store when reused.
3 (write): The buffer is cleared by TBSET, and written to backing store when reused.

For correct function of the table manager the value of this flag is important. The safest mode
of operation is “update”, but it is also the slowest.

4. Close the table to release table buffers (TBCLOS, Section 27.1).

27.1 Close a Dynamic Table

CALL TBCLOS(LTAB)

closes the table identified by the pointer LTAB. This allows the table buffers to be released.

27.2 Find a Table Column and its Format by Name

CALL TBCOL(LTAB,COL,IFORM,IBIAS)

searches an open table for a given column name.

LTAB Pointer identifying the table (input).

COoL Column name (MCNAM characters, input).

IFORM ZEBRA data type associated with the column format (output).
IBIAS Bias of the column in the buffer banks.

27.3 Create a Dynamic Table

CALL TBCREA(TNAM,NSEG,NROW,NCOL,CNAM,ICFRM,NBUF,LTAB)

creates a new dynamic table.

TNAM Name to be given to the table (MCNAM characters, input).
NSEG Number of segments to be allocated (input).

NROW Number of rows to be allocated (input).

NCOL Number of rows to be allocated (input).

CNAM Array of column names (NCOL words of MCNAM characters each, input).

104

ICFRM

NBUF

LTAB

274

CHAPTER 27. DYNAMIC TABLE HANDLER “TB”

Array of ZEBRA format codes (NCOL integers, input).

Minimum number of buffers to be allocated (input). A large number of buffers improves
the access speed, but it also occupies more space in the dynamic ZEBRA store.

Pointer to the created table (output), or zero in case of failure.

Delete a Dynamic Table

CALL TBDROP(LTAB)

deletes the dynamic table identified by the pointer LTAB.

27.5

Retrive a Table Descriptor

CALL TBGDSC(LTAB,DNAME,IFORM,IVAL,RVAL,SVAL)

retrieves a table descriptor value from a table.

LTAB
DNAME
IFORM
IVAL
RVAL

SVAL

27.6

Pointer identifying the table (input).
Descriptor name (MCNAM characters, input).
ZEBRA data type for descriptor (output).
Value of descriptor, if integer (output).
Value of descriptor, if real (output).

Value of descriptor, if string (output).

Open an Existing Dynamic Table

CALL TBOPEN(TNAM,NBUF,LTAB)

opens a dynamic table for reading or updating.

TNAM

NBUF

LTAB

27.7

Name given to the table at its creation (MCNAM characters, input).

Minimum number of buffers to be allocated (input). A large number of buffers improves
the access speed, but it also occupies more space in the dynamic ZEBRA store.

Pointer to the opened table (output), or zero in case of failure.

Add a Table Descriptor

CALL TBPDSC(LTAB,DNAME,IFORM,IVAL,RVAL,SVAL)

adds a table descriptor value to a table.

LTAB

DNAME

Pointer identifying the table (input).

Descriptor name (MCNAM characters, input).

27.8. READ A TABLE IN ASCII TFS FORMAT 105

IFORM ZEBRA data type for descriptor (input).
IVAL Value of descriptor, if integer (input).
RVAL Value of descriptor, if real (input).

SVAL Value of descriptor, if string (input).

27.8 Read a Table in ASCII TFS Format

CALL TBRTFS(TNAM,IUNIT)

reads a table in ASCII TFS format and leaves it open for reading.
TNAM A name to be given to the table (MCNAM characters, input).

IUNIT Logical unit number to read from (input).

27.9 Set Table Segment

CALL TBSEG(LTAB,ISEG,EFLAG)

changes the active segment number for a table. In the same time all buffers become empty; they must
be reloaded before using.

LTAB Pointer identifying the table (input).
ISEG Desired segment number (input).
EFLAG Logical error flag (output).

27.10 Set Table Row

CALL TBSET(LTAB,IROW,IFLAG,LBUF)

gives access to the table buffer for a given row.

LTAB Pointer identifying the table (input).
IROW Desired Row number (input).
IFLAG Mode flag (input): 1: read, 2: update, 3: write. For correct function of the table

manager this flag is important, since it controls when to fill or to dump buffers.

LBUF Pointer to the table buffer for the desired row (output).

27.11 Write a Table in ASCII TFS Format

CALL TBWTFS(TNAM,IUNIT)

opens an existing table and writes it in ASCII TFS format.
TNAM Name given to the table at its creation (MCNAM characters, input).

IUNIT Logical unit number to read from (input).

Chapter 28. Transport Maps “TM”

The TM module contains routines to compute and to operate on Transport maps [2]. A general transfer
map represents the transformation of phase space from entrance to exit of an element. A Transport
map is given by the Taylor series for the general transfer map, truncated at order 2:

6 6 6
zz@) = Az + ZRikzl(cl) + ZZTiklzz(cl)zz(l)a i=1...6.
k=1

k=11=1

Due to truncation a Transport map is symplectic only in exceptional cases. For algorithms refer to [1]
and to the MAD Physicist’s Reference Manual.

Table 28.1: Routines in the TM module

Name | Purpose Section
TMALI1 | TRANSPORT map for misalignment at entrance -
TMALI2 | TRANSPORT map for misalignment at exit -
TMARB | TRANSPORT map for MATRIX -
TMBB TRANSPORT map for BEAMBEAM -
TMBEND | TRANSPORT map for RBEND or SBEND -

TMCAT | Concatenate to TRANSPORT maps 28.1
TMCLOR | Find closed orbit 28.14
TMCORR | TRANSPORT map for HKICK, VKICK, or KICK -

TMDERI | Compute total derivative of R matrix w.r.t. energy error 28.2

TMDRF | TRANSPORT map for DRIFT -
TMFOC | Internal routine for focussing matrix -
TMFRNG | TRANSPORT map for fringing fields -

TMFRST | Transfer matrix for one turn w.r.t. given orbit 28.3
TMINV | Invert a TRANSPORT map 28.4
TMMAP | TRANSPORT map for an element 28.5
TMMKSM | Multiply TRANSPORT map by its reflection 28.6

TMMULT | TRANSPORT map for MULTIPOLE -
TMOCT TRANSPORT map for OCTUPOLE -
TMQUAD | TRANSPORT map for QUADRUPOLE -

TMREFE | Transfer matrix for one turn w.r.t. ideal orbit 28.3
TMREFL | Reflect a TRANSPORT map 28.8
TMRF TRANSPORT map for RFCAVITY -

TMSCND | TRANSPORT map for one turn w.r.t. given orbit 28.9

TMSECT | TRANSPORT map for sector bend without fringe fields -
TMSEP TRANSPORT map for ELSEPARATOR -
TMSEXT | TRANSPORT map for SEXTUPOLE -
TMSOL TRANSPORT map for SOLENOID -
TMSROT | TRANSPORT map for SROT -

TMSYMM | Fill in symmetric terms in T array 28.10
TMSYMP | Symplectify an R matrix 28.11
TMTILT | Conjugate a TRANSPORT map with a rotation around s-axis 28.12
TMTRAK | Refer TRANSPORT map to a given orbit 28.13
TMTURN | TRANSPORT map for one turn w.r.t. closed orbit 28.14
TMUSER | TRANSPORT map for user-defined elements 28.15

TMYROT | TRANSPORT map for YROT -

106

28.1. CONCATENATE TWO TRANSPORT MAPS 107

28.1 Concatenate two TRANSPORT Maps

CALL TMCAT(FSEC,RB,TB,RA,TA,RD,TD)

concatenates two TRANSPORT maps.

FSEC If .TRUE. the second-order terms are also done (input).
RB,TB Second map in beam line order (input).

RA,TA First map in beam line order (input).

RD,TD Result of composition (output).

A similar routine also considers zero-order terms:

CALL TMCAT1(FSEC,EB,RB,TB,EA,RA,TA,ED,RD,TD)

concatenates two TRANSPORT maps.

FSEC If .TRUE. the second-order terms are also done (input).
EB,RB,TB Second map in beam line order (input).

EA,RA,TA First map in beam line order (input).

ED,RD,TD Result of composition (output).

The Ex variables conbtain the kicks.

28.2 Derivative of Transfer Matrix with Respect to 6p/p

CALL TMDERI(TT,DISP,RTP)

computes the total derivative dR;;/dé = 2 2?21 T, D; of the first-order transfer matrix with respect
to the relative energy error.

TT Second-order T' array for the map to be derived (input).
DISP Dispersion vector D for the initial position (input).
RT Total derivative dR/dé (output).

28.3 Transfer Matrix with Respect to Given Orbit

CALL TMFRST(LSEQ,EFLAG)

stores the the transfer matrix for a beam line expansion in MAPTRN (Section 3.5). It takes the initial
orbit coordinates from /OPTICO/ ORBITO(6) (Section 3.6).

LSEQ Pointer to a beam line expansion (input),
EFLAG Returned as true, if an overflow occurs (output).

This routine uses the control flags in /STFLAG/ (Section 3.11).

108 CHAPTER 28. TRANSPORT MAPS “TM”

28.4 Invert a TRANSPORT Map

CALL TMINV(RS,TS,RD,TD)

inverts a TRANSPORT map.
RS,TS TRANSPORT map to be inverted (input)

RD,TD Inverted map (output).

28.5 TRANSPORT Map for Single Elements

CALL TMMAP(FSEC,FTRK,EL,FMAP)

stores the map and the kick for the current element in MAPELM (Section 3.4). It assumes that the
routines UTBEAM and UTELEM have been called to set all relevant pointers.

FSEC If .TRUE. the second-order terms are also done (input).

FTRK If .TRUE. the orbit in /OPTIC1/ ORBIT(6) (Section 3.7) is advanced through the ele-
ment (input).

EL Length of the element in m (output).

FMAP Logical flag telling whether the element affects the beam (output).

This routine uses the control flags in /STFLAG/ (Section 3.11).

28.6 Add Symmetric Part to TRANSPORT Map

CALL TMMKSM(FSEC)

completes the accumulated map in MAPTRN (Section 3.5) for a symmetric line. It does this by premul-
tiplying the map by the reflection, obtained by TMREFL.

FSEC If .TRUE. the second-order terms are also done (input).

Reflecting an element which is not longitudinally symmetric will not produce the desired effect. An
accelerating cavity, for example, will become decelerating.

28.7 Transfer Matrix with Respect to Ideal Orbit

CALL TMREFE(LSEQ)

stores the transfer matrix for a beam line expansion in MAPTRN (Section 3.5). It ignores any effects
which may displace the orbit and replaces RF cavities by drifts.

LSEQ Pointer to the a line expansion input).

28.8. REFLECT A TRANSPORT MAP 109

28.8 Reflect a TRANSPORT Map

CALL TMREFL(RS,TS,RD,TD)

reflects a TRANSPORT map, i. e. it calculates the map for its elements taken in reverse order.

RS,TS Map to be reflected (input).

RD,TD Reflected map (output).

Reflecting an element which is not longitudinally symmetric will not produce the desired effect. An
accelerating cavity, for example, will become decelerating.

28.9 TRANSPORT Map with respect to Closed Orbit

CALL TMSCND(LSEQ)

stores the the TRANSPORT map for a beam line expansion in MAPTRN (Section 3.5). It takes the
initial orbit coordinates from /0OPTICO/ ORBITO(6) (Section 3.6).

LSEQ Pointer to a beam line expansion (input).

This routine uses the control flags in /STFLAG/ (Section 3.11).

28.10 Make T Array Symmetric

The T arrays in a TRANSPORT map is symmetric with respect to its second and third indices. To
make definition of such an array easier, on may fill in the values T;; for 1 <7< 6,1 <k <1< 6 only
and call

CALL CALL TMSYMM(T)

to make the array symmetric.

28.11 Symplectify R Matrix

CALL TMSYMP(R)

Modifies its argument, a 6 x 6 matrix R, by a (hopefully) small amount to make it symplectic.

28.12 Conjugate a TRANSPORT Map with a Rotation around the
s-Axis

CALL TMTILT(FSEC,TILT,EK,R,T)

Is the transformation required for tilted elements. It premultiplies the untilted map and kick with a
rotation and postmultiplies it by the inverse rotation.

FSEC If .TRUE. the second-order terms are also done (input).
TILT Rotation angle in rad.
EX Six-dimensional kick Az associated with the map (input/output).

R,T Map to be transformed (input/output).

110 CHAPTER 28. TRANSPORT MAPS “TM”

28.13 Track Orbit Through a TRANSPORT Map

CALL TMTRAK(EK,RE,TE,0RB1,0RB2)

advances the orbit through a TRANSPORT map. It also modifies the transfer matrix in MAPELM to
become the matrix with respect to the given orbit.

EK Kick in six dimensions (input).

RE,TE TRANSPORT map to be applied (input).
ORB1 Orbit before transformation (input).

ORB2 Orbit after transformation (output).

28.14 Closed Orbit and TRANSPORT Map

CALL TMTURN(LSEQ,DELTAT,DELTAP ,MFLAG,EFLAG)

stores the closed orbit for a beam line expansion in /OPTICO/ ORBITO(6) (Section 3.6) and the
TRANSPORT map in MAPTRN (Section 3.5).

LSEQ Pointer to a beam line expansion (input).

DELTAP (Average) relative energy error § E /poc (input).

MFLAG If .TRUE. the monitor readings are updated (input).

DELTAT Path length difference ct in m (output).

EFLAG Logical flag telling whether the orbit could be found (output).

To improve speed the closed orbit and transport map for each energy error are kept in banks linked
to the sequence bank. The first time TMTURN is called for a given energy error, it creates a corre-
sponding bank by calling

CALL TMCLOR(LSEQ,DELTAT,DELTAP,SHOW,EFLAG)

LSEQ Pointer to the beam line expansion (input), normally LCSEQ (Section 2.10).
DELTAP (Average) relative energy error § E /poc (input).

SHOW If .TRUE., a log is printed on the ECHO file during closed orbit search (input).
DELTAT Path length difference ct in m (output).

EFLAG If the closed orbit could not be found, this flag becomes true (output).

The banks containing the orbits and maps are dropped if anything changes in the beam line. These
routines use the control flags in /STFLAG/ (Section 3.11).

28.15. TRANSPORT MAP FOR USER-DEFINED ELEMENT 111

28.15 TRANSPORT Map for User-Defined Element

CALL TMUSER(FSEC,EK,RE,TE)

returns the TRANSPORT map for an user-defined element. It should take the element parameters
from the element bank, pointed at by LCELM (Section 3.1).

FSEC If .TRUE., the second-order terms must also be returned (input).

EK Kick in six dimensions (output).

RE,TE The TRANSPORT map for the element (output).

Chapter 29. “TAPE3” Routines “TP”

The TP module provides utilities for output for the TAPE option of SURVEY and TWISS commands. As
these routines are considered as obsolete, they are not documented.

Table 29.1: Routines in the TP module
Name | Purpose Section
TPELEM | Write data for current element -
TPHEAD | Write header for TAPE option file -

112

Chapter 30. Tracking Module “TR”

The TR module contains the switch and command routines for tracking. These routines are not
documented here, as any change may seriously affect tracking speed.

Table 30.1: Routines in the TR module
Name | Purpose Section
TRBEGN | Command routine for TRACK command -
TRCLOS | Close machine-independent binary track file -
TRDSP1 | Displace rays due to misalignments at entrance -

TRDSP2 | Displace rays due to misalignments at exit -
TREND | Command routine for ENDTRACK command -
TREXEC | Bookkeeping for tracking over many turns -
TRFILE | Write tracks on machine-independent binary track file -
TFFLOW | Test for overflow rays -
TRHEAD | Write header on machine-independent binary track file -
TRMAIN | Switch routine for TR module -
TRKILL | Remove rays lost by packing surviving rays -
TRNOIS | Command routine for NOISE command -
TRNRES | Reset parameters which were changed due to noise -
TRNSET | Add noise to parameter values -
TRPELM | Print rays after an element -
TRPTRN | Print rays after a turn -
TRRUN | Command routine for RUN command -
TRSAVE | Command routine for TSAVE command -
TRSTRT | Command routine for START command -
TRTBLE | Save current turn in track table -
TRTURN | Bookkeeping for tracking over one turn -

113

Chapter 31. TRANSPORT Tracking Routines “TT?”

The TT module contains routines for tracking by the TRANSPORT method. The algorithms are
straight-forward.

Table 31.1: Routines in the TT module

Name | Purpose Section
TTBB Track through a BEAMBEAM interaction -
TTCORR | Track through a HKICK, VKICK, or KICK -
TTDRF | Track through a DRIFT or similar element -
TTELEM | Track through an element 31.1
TTMULT | Track through a MULTIPOLE -
TTOCT | Track through a 0CTUPOLE -
TTQUAD | Track through a QUADRUPOLE -
TTRF Track through a RFCAVITY -
TTSEXT | Track through a SEXTUPOLE -
TTSOL | Track through a SOLENOID -
TTSROT | Track through a SROT -
TTTRAK | Apply TRANSPORT map on a set of rays 31.2
TTUSER | Track through a user-defined element 31.3
TTYROT | Track through a YROT -

31.1 Track through an Element by TRANSPORT Method

CALL TTELEM(ITURN,IORD,ISUP,IPOS,SUML,TRACK,NUMBER,NTRACK)

advances a set of rays through the current element. It assumes that UTBEAM and UTELEM have been
called to set the relevant pointers, or that equivalent operations have been performed before the
call. Most elements are tracked by the TRANSPORT method; however some elements (e. g. thin
multipoles) have their ad hoc method.

ITURN Number of current turn, for messages (input).

I0RD Not used, present for compatibility with LMELEM.
ISUP Number of current superperiod, for messages (input).
SUML Accumulated length (input/output).

TRACK Rays to be tracked (input/output).

NUMBER Ray numbers for the rays in TRACK (input/output).
NTRACK Number of rays in TRACK.

The orbits are compacted when an orbit is lost. Thus the n** orbit is stored in TRACK (*,7), and its
number is found in NUMBER(2).

114

31.2. APPLY TRANSPORT MAP TO A SET OF RAYS 115

31.2 Apply TRANSPORT Map to a Set of Rays

CALL TTTRAK(D,R,T,TRACK,NTRACK)

advances a set of rays through a given TRANSPORT map:

6 6 6
zl(z) = Az + ZRikZ;(cl) + ZZTiklZ;(cl)Zz(l)a for i=1...6.

k=1 k=11=1

It has the arguments:

D Kicks AZ (input).

R First-order terms R (input).

T Second-order terms T (input).
TRACK Set of rays (input/output).
NTRACK Number of rays (input).

The rays are stored as explained in Section 31.1.

31.3 Track through User-Defined Elements

CALL TTUSER(EL,TRACK,NTRACK)

may be replaced by the user to implement tracking through user-defined elements. It should take the
element parameters from the element bank, pointed at by LCELM (Section 3.1).

EL Element length (output).
TRACK Set of rays (input/output).
NTRACK Number of rays (input).

The rays are stored as explained in Section 31.1.

Chapter 32. Twiss Routines “TW?”

The TW module contains the switch and command routines for the commands of the Twiss group.
These include also derived commands, like IBS. For algorithms refer to the MAD Physicist’s Manual.

Table 32.1: Routines in the TW module

Name | Purpose Section
TWBTGO | Bookkeeping routine for TWISS,-COUPLE -
TWBTIN | Initial lattice functions for TWISS,-COUPLE -
TWBTPR | Print lattice function for TWISS,-COUPLE -
TWBTSV | Save lattice functions in table for TWISS,-COUPLE -
TWBTTK | Track lattice functions for TWISS,-COUPLE -
TWBTTP | Write lattice functions on file for TWISS,-COUPLE -
TWCHGO | Bookkeeping routine for TWISS,CHROM -
TWCHPR | Print lattice functions for TWISS,CHROM -
TWCHTP | Write lattice functions on file for TWISS,CHROM -
TWCLOG | Compute Coulomb logarithm for IBS -
TWCPGO | Bookkeeping routine for TWISS,COUPLE -
TWCPIN | Initial lattice functions for TWISS,COUPLE -
TWCPPR | Print lattice functions for TWISS,COUPLE -
TWCPTK | Track lattice functions for TWISS,COUPLE -
TWDISP | Track dispersion -
TWFILL | Fill in given initial values -
TWIBS | Command routine for IBS -
TWISS | Command routine for TWISS -
TWMAIN | Switch routine for TW module -
TWOPGO | Bookkeeping routine for OPTICS -
TWOPSV | Save lattice functions in table for OPTICS -
TWOPTC | Command routine for OPTICS -
TBSBET | Command routine for SAVEBETA -
TWSINT | Bjorken/Mtingwa integrals -
TWSMSV | Save TWISS summary data -
TWSUMM | Compute TWISS summary data -

116

Chapter 33. Utility Routines “UT”

The utilities in the UT module include routine to store data into and to retrieve data from banks, and
pattern matching routines.

Table 33.1: Routines in the UT module

Name | Purpose Section
UTBEAM | Retrieve current working beam line and range 33.1
UTCLRC | Clear occurrence counts in data bank directory 33.2
UTDASH | Internal routine for UTPATT -
UTELEM | Retrieve data and pointers for current element 33.3
UTGFLT | Retrieve floating-point data 33.4.1
UTGINT | Retrieve integer data 33.4.2
UTGLOG | Retrieve logical data 33.4.3
UTGNAM | Retrieve alphanumeric data 33.4.4
UTGPOS | Retrieve position reference 33.6
UTGRNG | Retrieve range reference 33.6
UTGSTR | Retrieve string data 33.4.5
UTGTYP | Retrieve MAD data types 33.5
UTLENG | Find last non-blank character in a string 33.7
UTLOOK | Search for a name in a table, accepting abbreviations 33.8
UTMTCH | Internal routine for UTMTPT -
UTMTPT | Match name to pattern 33.10
UTOCNM | Generate unique name from occurrence counter 33.9
UTPATT | Built pattern for pattern matcher 33.10
UTPFLT | Store floating-point data 33.11.1
UTPINT | Store integer data 33.11.2
UTPLOG | Store logical data 33.11.3
UTPNAM | Store alphanumeric data 33.11.4

33.1 Retrieve Current Working Beam Line and Range

CALL UTBEAM(LSEQ,IRG1,IRG2,SYMM,NSUP,LINNAM,RNGNAM)

retrieves the data for the current working range. The structure of the main beam line expansion is
explained in Section 2.10.

LSEQ Pointer to a beam line expansion (input).

IRG1 Start position of the range set by the latest USE command (output).
IRG2 End position of the range set by the latest USE command (output).
SYMM Symmetry flag from the latest USE command (output).

NSUP Number of superperiods from the latest USE command (output).
LINNAM Name of the expanded beam line (output).

RNGNAM Range specification in printable form (output).

117

118

CHAPTER 33. UTILITY ROUTINES “UT”

33.2 Clear Occurrence Counters In Data Bank Directory

CALL UTCLRC

is used internally by MAD to clears all occurrence counters in the data bank directory.

33.3 Retrieve Data and Pointers for Current Element

CALL UTELEM(LSEQ,IP0S,IFLAG,ELMNAM,I0CC,IENUM)

LSEQ
IPOS
IFLAG
ELMNAM
I0CC

TENUM

Pointer to a beam line expansion (input).

Position number (IRG1 < IPOS < IRG2, output).

Flag word from the position flags bank (output, Table 2.18).
Element name (output).

Occurrence number for the element or line ELMNAM (output).

The physical element counter for this position (output). Starts at one for the first
element of the line (not of the range), incremented for each element encountered.

The subroutine UTELEM also sets the following reference pointers in common block REFER:

LCELM

LCALI

LCFLD

LCCOM

Current element.

Misalignments for the current element (see Section 2.10.2). This pointer is zero, if there
is no misalignment.

Field errors for the current element (see Section 2.10.2). This pointer is zero, if there
is no field error.

Information specific to the current orbit corrector or monitor (see Section 2.10.3). This
pointer is zero, if the current element is not a corrector or monitor, or if no orbit
correction has been made yet.

As an example take a routine which lists all physical elements:

+CALL
+CALL
+CALL

SUBROUTINE LIST

IMPLICIT

SEQFLAG required for MCODE

REFER required for LCSEQ, LCALI, and LCFLD
CHARACTER* (MCNAM) ELMNAM, LINNAM

CHARACTER*40 RNGNAM

LOGICAL SYMM

CALL UTBEAM(LCSEQ, IP0S1, IP0S2, SYMM, NSUP, LINNAM, RNGNAM)

WRITE

(IFILE, 910) LINNAM, RNGNAM

DO 90 IPOS = IP0OS1, IPOS2
CALL UTELEM(LCSEQ, IP0S, IFLAG, ELMNAM, IOCC, IENUM)
ICODE = JBYT(IFLAG,1,MCODE)
IF (ICODE .EQ. 1) THEN

33.4. FETCH ATTRIBUTES FROM COMMAND OR DEFINITION BANKS 119

WRITE (IFILE, 920) IENUM, IOCC, ELMNAM
IF (LCALI .NE. 0) WRITE (IFILE, 930)
IF (LCFLD .NE. 0) WRITE (IFILE, 940)
ENDIF
90 CONTINUE

910 FORMAT(’ Listing line: ’,A,’ Range: ’,A)

920 FORMAT(’ Physical element number ’,I5,’ is occurrence ’,I5,
+ > of name ’,A)

930 FORMAT(’ This element is misaligned.’)

940 FORMAT(’ This element has field errors.’)
END

33.4 Fetch Attributes from Command or Definition Banks

The routines in this section all retrieve data without requiring detailed knowledge of the precise bank
structure. They all have three input arguments:

LBANK Pointer to a command or definition bank (input).
I1,I2 Range of attributes to be retrieved (input).
v Vector with dimension (I2-I1+1) (output).

of the proper type. For Il < ¢ < I2, the routines copies attribute ¢ into V(z-I1+1), if it has the
expected type and has been set. Otherwise V(i-I1+1) remains unchanged. One may thus fill V with
default values prior to calling a routine. Refer to the code for command routines for examples.

33.4.1 Real or Deferred Values

CALL UTGFLT(LBANK,I1,I2,V)

The output vector V is of type REAL (single precision version) or DOUBLE PRECISION (double precision
version). If an attribute is a deferred expression, UTGFLT generates a new value by calling EXEVAL.

33.4.2 Integer Values

CALL UTGINT(LBANK,I1,I2,V)

The output vector V is of type INTEGER.

33.4.3 Logical Values

CALL UTGLOG(LBANK,I1,I2,V)

The output vector V is of type LOGICAL.

33.4.4 Name Values

CALL UTGNMT(LBANK,I1,I2,V)

The output vector V is of type CHARACTER* (MCNAM).

120 CHAPTER 33. UTILITY ROUTINES “UT”

33.4.5 String Values

CALL UTGSTR(LBANK,I1,I2,V)

The output vector V is of type CHARACTER* (MCSTR).

33.5 Data Type Flags

CALL UTGTYP(LBANK,ITYPE)

returns an array of MAD data types for the attributes of a command.
LBANK Pointer to the command bank (input).

ITYPE INTEGER array which will contain the MAD data type of each attribute (if the attribute
was entered) or zero (if not entered). ITYPE must be dimensioned at least by the
number of command attributes.

33.6 Ranges and Positions

CALL UTGRNG(LRNG,LSEQ,IRG1,IRG2,EFLAG)

returns the positions for the end points of a range.

LRNG Pointer to a range reference bank (Table 2.11, input).
LSEQ Pointer to a beam line expansion (Section 2.10, input).
IRG1,IRG2 Start and end positions of the range (output).

EFLAG Logical error flag (output).

The two positions are searched for by two calls to

CALL UTGPOS(LRNG,LSEQ,IEND,IP0S,EFLAG)

LRNG Pointer to the range reference bank (input).

LSEQ Pointer to a beam line expansion (input).

IEND Offset in the range reference bank: 0 for start, 3 for end (input).
IPOS Position found (output).

EFLAG Logical error flag (output).

33.7 Find Last Non-Blank Character in a Name

CALL UTLENG(WORD,LENG)

takes a character variable WORD of any length and returns in LENG the position of its last non-blank
character.

33.8. LOOK UP NAME IN A TABLE 121

33.8 Look up Name in a Table

PARAMETER (NDICT = ...)
CHARACTER#* (MCNAM) DICT(NDICT)
CALL UTLOOK(WORD,DICT,NDICT,IDICT)

looks up a character variable WORD of any length in the dictionary vector DICT. If found, IDICT is set
to the position, otherwise it is set to zero. The routine accepts abbreviations, provided they have at
least characters and are unique:

PARAMETER (NDICT = ...)

CHARACTER#* (MCNAM) DICT(NDICT)

CHARACTER* (MCNAM) WORD

CALL UTLENG(WORD,LENG)

CALL UTLOOK(WORD(1:LENG),DICT,NDICT,IDICT)

finds WORD="TI’ in the dictionary, if there is exactly one dictionary entry beginning with *TI’.

33.9 Generate Unique Name

CALL UTOCNM(OLD,IOCC,NEW)

result is returned in NEW, which must be of type CHARACTER*(16).

33.10 Pattern Matching

Commands which use pattern matching (SAVE and REMOVE) should first convert the pattern to an
internal data structure:

CALL UTPATT(PATT,LPATT)

PATT Pattern string (input).

LPATT Pointer to the generated data structure (output). This pointer should reside in a
structural link area.

The test whether a name matches the pattern is then made by

CALL UTMTPT(LPATT,NAME,FOUND)

LPATT Pointer returned by UTPATT (input).
NAME Name to be matched (input).

FOUND Logical flag (output is .TRUE. on success).

122 CHAPTER 33. UTILITY ROUTINES “UT”

33.11 Store Attributes in Command or Definition Banks

The routines in this section all store data without requiring detailed knowledge of the precise bank

structure.

LBANK Pointer to a command or definition bank (input).

I1,I2 Range of attributes to be stored (input).

v Vector with dimension (I2-I1+1) of the proper type (output).

For I1 < i < I2 the value V(i-I1+1) is copied into the i** attribute of the bank, provided this attribute
has the expected type, and the attribute is marked as set. Refer to the code for command routines
for examples.

33.11.1 Real Values

CALL UTPFLT(LBANK,I1,I2,V)

The input vector V is of type REAL (single precision version) or DOUBLE PRECISION (double precision
version). If an attribute stored was defined previously by an expression, the expression is erased.

33.11.2 Integer Values

CALL UTPINT(LBANK,I1,I2,V)

The input vector V is of type INTEGER.

33.11.3 Logical Values

CALL UTPLOG(LBANK,I1,I2,V)

The input vector V is of type LOGICAL.

33.11.4 Name Values

CALL UTPNAM(LBANK,I1,I2,V)

The input vector V is of type CHARACTER* (MCNAM).

Chapter 34. Miscellaneous Routines in MAD

Table 34.1: Miscellaneous Utilities in MAD

Name | Purpose Section
Random Generators:
FRNDM | Uniform distribution in (0,1) -
GRNDM | Gaussian distribution with o =1 -
INIT55 | Initialize random generators -
IRNDM | Integer in range (1,999999999) -
IRNGEN | Get next number in sequence -
Linear Algebra and Minimization:
FDJAC2 | Internal routine for LMDIF -
HQR2 Eigenvalues of a real general matrix -
HTLSQ | Least squares fit by Householder transforms -
LMDIF | Minimization by LMDIF method -
LMPAR | Internal routine for LMDIF -
ORTHES | Transform matrix to Hessenberg form by Householder transforms -
ORTRAN | Accumulate several Householder transforms -
QRFAC | Factorize by QR method -
QRSOLV | Solve linear equations after QR factorization -
SOLVER | Solve linear equations -
SYMEIG | Eigenvalues of real symmetric matrix -
SYMSOL | Solve linear equations with symmetric matrix -
VDOT Dot product of two vectors -
VMOD Modulus of a vector -
Other Routines:
CHINIT | Initialize character code table, called by AAINIT -
ERRF Complex error function, used for BEAMBEAM element -
FACTOR | Factorial function -
User-Replaceable Routines:
USERCM | User-defined commands -
USERDF | User-defined definitions -
USERO | User-defined random generator, 0 arguments -
USER1 | User-defined random generator, 1 argument -
USER2 | User-defined random generator, 2 arguments -
ZEBRA Services, see ZEBRA manual:
ZABEND | Abnormal end of program -
ZEND Normal end of program -
ZTELUS | User-defined program error exit -

123

124 CHAPTER 34. MISCELLANEOUS ROUTINES IN MAD

Part 111

CERN Library Routines Called by
MAD

125

Chapter 35. ZEBRA Routines

Table 35.1: ZEBRA Routines Called by MAD

Name | Purpose Section
DZSHOW | Dump ZEBRA bank 35.1
FZENDI | End ZEBRA input 35.2
FZENDO | End ZEBRA output 35.3
FZFILE | Declare file to ZEBRA 35.4
FZIN ZEBRA input 35.5
FZOUT | ZEBRA output 35.6
LZFIND | Search linear list for word 35.7
LZLAST | Find last bank in linear list 35.8
LZLONG | Search linear list for word string 35.9
MZBOOK | Book new bank 35.10
MZCOPY | Copy bank or structure 35.11
MZDROP | Drop bank or structure 35.12
MZEBRA | Initialize ZEBRA system 35.13
MZEND | End of ZEBRA processing 35.14
MZFLAG | Flag bank or structure 35.15
MZGARB | Garbage collection 35.16
MZLINK | Declare link area 35.17
MZNEED | Test for available space 35.18
MZPUSH | Change bank size 35.19
MZSTOR | Initialize ZEBRA store 35.20
MZVERS | Print ZEBRA version 35.21
MZWIPE | Wipe out division 35.22
MZWORK | Allocate working space 35.23
NZBANK | Find number of banks in sinear list 35.24
ZFATAL | Fatal termination 35.25
ZFATAM | Fatal termination with message 35.26
ZPHASE | Switch processing phase 35.27
ZSHUNT | Change bank linkage 35.28
ZTOPSY | Reverse order of linear list 35.29

35.1 Dump ZEBRA Bank

CALL DZSHOW(CHTEXT,ISTOR,LBANK,CHOPT,ILINK1,ILINK2,IDATA1,IDATA2)

Displays the contents of a bank or a data structure. The output format is controlled by the I/0O
characteristics of the structure.

CHTEXT Character variable printed to identify the output.
ISTOR Index of the store containing the bank or data structure.
LBANK Pointer to the bank or structure to be displayed.
CHOPT Option string. A selection of the following:
B’ Print the single bank at LBANK (default).

127

128 CHAPTER 35. ZEBRA ROUTINES

Ok Print the bank contents down (in five columns).

’3? Print the bank contents sideways (in lines of 10 elements).
'L Print the whole linear structure supported by LBANK.

e Print the vertical structure supported by LBANK.

A Print the structure in hexadecimal format.

ILINK1,ILINK2 First and last link number to be printed for each bank. When both are zero, all links
are displayed.

IDATA1,IDATA2 First and last data word to be printed for each bank. When both are zero, all data
words are displayed.

35.2 End ZEBRA Input

CALL FZENDI(IUNIT,CHOPT)

Ends one or several input files.

IUNIT Logical unit number. If zero, all FZ input files.

CHOPT Option string. A selection of the following:
’0° Switch file to output; needed after positioning by reading.
Q° Quiet, suppress printing of file statistics.
'R’ Final rewind.
)T Terminate, drop control bank for this file and print statistics.
'y Unload file.

35.3 End ZEBRA Output

CALL FZENDO(CIUNIT,CHOPT)

Terminates one or several output files.

IUNIT Logical unit number. If zero, all FZ output files.
CHOPT Option string. A selection of the following:
ok Write end of file (unless done).
E2’ Write end of data (unless done).
'F? Flush the buffer only.
1 Switch to input, write end of data and rewind, if not yet done. Cancel
the output permission.
Q° Quiet, suppress printing of file statistics.
’R’ Rewind, unless done.
)T Terminate; write end of run, drop control bank for this file and print
statistics.

U Unload file.

35.4. DECLARE FILE TO ZEBRA 129

35.4 Declare File to ZEBRA

CALL FZFILE(IUNIT,LREC,CHOPT)

Declares a file to ZEBRA.

TUNIT Logical unit number.
LREC Record length. Zero gives system defaults.
CHOPT Option string. A selection of the following:
file medium: default: Disk.
M Memory.
T Magnetic tape.
file format: default: Native format.
TA° Exchange format, ASCII mapping.
’X? Exchange format, binary.

data format: default for disk or tape files: Same as file format.

default for memory: Native format.

N Native format.
X Exchange data format.
processing direction: default: Input only.
1 Input enabled.
’0° Output enabled.
’10° Input and output enabled.
end of file: ’0° No hardware file marks.
11 Hardware file mark only for level 2 end of file.
127 Hardware file marks for both level 1 and 2 end of files.
various options: ’R’ Initial rewind.
Q° Quiet, print error messages only.
'p? Permissive, enable error returns.

35.5 ZEBRA Input

CALL FZIN(IUNIT,IDIV,LSUP,IBIAS,CHOPT,NUH,IUHEAD)

Reads a complete data structure from a file.

TUNIT Logical unit number.

IDIV Index of the division to receive the data structure.
LSUP,IBIAS See the description of MZBOOK in Section 35.10.

CHOPT Option string. Only default options are used in MAD.
NUH Size of the user header (not used in MAD).

IUHEAD The user header (not used in MAD).

130 CHAPTER 35. ZEBRA ROUTINES

35.6 ZEBRA Output

CALL FZOUT(IUNIT,IDIV,LENTRY,IEVENT,CHOPT,I0D,NUH,IUHEAD)

Writes a data structure to a file.

TUNIT Logical unit number.

IDIV Index of the store or division containing the data structure.
LENTRY Pointer to the data structure to be written.

IEVENT Start-of-event flag; always 1.

CHOPT Option string.

10D Format descriptor for the user header (not used in MAD).
NUH The size of the user header (not used in MAD).

IUHEAD The user header (not used in MAD).

35.7 Search Linear List for Word

L=FUNCTION LZFIND(ISTOR,LSUP,IWORD,M)

searches the linear list pointed at by LSUP for the first bank containing IWORD in position M.

35.8 Find Last Bank in Linear List

INTEGER FUNCTION LZLAST(ISTOR,LSUP)

searches the linear list pointed at by LSUP for its last bank.

35.9 Search Linear List for Word String

INTEGER FUNCTION LZLONG(ISTOR,LSUP,N,ITEXT,M)

searches the linear list pointed at by LSUP for the first bank containing ITEXT in positions N to N+M-1.

35.10 Book New Bank

CALL MZBOOK(IDIV,L,LSUP,IBIAS,IDH,NL,NS,ND,NIO,NZERO)

books a new bank.
IDIV The division number, 2 for long-lived banks, 1 for temporary banks.
L Pointer to the new bank (output).

LSUP,IBIAS The new bank will be linked to link IBIAS of the bank at LSUP. If IBIAS is 1, LSUP
must be a structural link in a link area which will be made to point at the new bank.

35.11. COPY BANK OR STRUCTURE 131

IDH Hollerith name of the bank.

NL Total number of links to be allocated.

NS Number of structural links (out of the total number) to be allocated.

ND Number of data words to be allocated.

NIO ZEBRA data code (Section 2.1) for the bank.

NZERO If zero, the bank is preset to zeros; if positive, the first NZERO words are cleared; if

negative, no presetting is done.

35.11 Copy Bank or Structure

CALL MZCOPY(IDIV1,LENTRY,IDIV2,LSUP,IBIAS,CHOPT)

copies a data structure
IDIV1,LENTRY Structure to be copied resides in division IDIV1 and is pointed at by LENTRY.

IDIV1,LSUP,IBIAS Structure is copied to division IDIV2, and will be linked to link IBIAS of the bank
at LSUP.

CHOPT Option string. In MAD this is always ’S’ (single bank).

35.12 Drop Bank or Structure

CALL MZDROP(ISTOR,L,CHOPT)

drops a data structure.

ISTOR Store number. In MAD this is always zero.

L Pointer to the bank to be dropped.

CHOPT Option string. A selection of:
10 Drop linear structure.
e Drop only vertical dependents.
default: Drop bank and its vertical dependents.

35.13 Initialize ZEBRA System

CALL MZEBRA(I)

Initializes the ZEBRA system.

I The value -2 suppresses logging.

132 CHAPTER 35. ZEBRA ROUTINES

35.14 End of ZEBRA Processing

CALL MZEND

Prints ZEBRA statistics about the usage of all divisions.

35.15 Flag Bank or Structure

CALL MZFLAG(ISTOR,L,IBIT,CHOPT)

Sets a status bit in work IQ(L) for all banks in a structure.

ISTOR Store number. This is always zero in MAD.
L Pointer to the structure to be flagged.
IBIT Number of the bit to be set. This may be interrogated for a bank by the function call

JBIT(IQ(L),IBIT).

CHOPT Option string. The same letters are accepted as for MZDROP. Additionally the character
’Z’ causes the selected bit to be cleared to zero.

35.16 Garbage Collection

CALL MZGARB(IGARB,IWIPE)

causes garbage collection in division IGARB and division IWIPE is wiped out.

35.17 Declare Link Area

CALL MZLINK(ISTOR,NAME,LAREA,LREF,LREFL)

declares a link area (in a COMMON block) to ZEBRA. If this call is omitted, ZEBRA will not update
the links in this area in case of garbage collection.

ISTOR Store number. This is always zero in MAD.
NAME Name of the link area.
LAREA First word in the area, also the first link of this area.
LREF First reference link, if any; otherwise the last structural link.
LREFL Last reference link, if any; otherwise this parameter is LAREA.
Examples:

* Mixed link area:

COMMON /LAMIX/ LS1, ..., LSN, LR1, ..., LRN
CALL MZLINK(O, ’/LAMIX/’, LS1, LR1, LRN)

* A1l structural links:
COMMON /LASTR/ LS1, ..., LSN

35.18. TEST FOR AVAILABLE SPACE 133

CALL MZLINK(O, °®/LASTR/’, LS1, LSN, LS1)
* A1l reference links:

COMMON /LAREF/ LR1, ..., LRN
CALL MZLINK(O, ’/LAREF/’, LR1, LR1, LRN)

35.18 Test for Available Space

CALL MZNEED(IDIV,NNEED,CHOPT)

Tests if the required number of words is available in a division.

IDIV Number of the division; 2 for long-lived data, 1 for temporary.
NNEED Number of words needed.
CHOPT Option string. If there are not enough words, and the option contains ’G’, garbage

collection is performed.

The variable IQUEST(11) will contain the number of words which would remain after allocating NNEED
words.

35.19 Change Bank Size

The size of a bank can be increased or decreased by using

CALL MZPUSH(ISTOR,L,INCNL,INCND,CHOPT)

ISTOR Store number. This is always zero in MAD.

L The pointer to the bank whose size is to be changed. If the bank must be moved, L is
updated automatically.

INCNL The number of links to be added (positive) or removed (negative). If the bank has
only structural links, the new links will be structural as well, otherwise they will be
reference links.

INCND The number of data words to be added (positive) or removed (negative).
CHOPT Option string. A selection of:
'R’ No reference links point into the abandoned bank region.
1 Only the supporting structural link, the link passed in L, and the reverse

links in the first level dependents point to this bank.

default Any link may point to this bank.

134 CHAPTER 35. ZEBRA ROUTINES

35.20 Initialize ZEBRA Store

PARAMETER (MEMMIN = 100 000)

PARAMETER (MEMLEN = 500 000)

COMMON /MEMORY/ FENCE, LQ(MWFLT*MEMLEN)

SAVE /MEMORY/

INTEGER IQ(MWFLT*MEMLEN)

REAL FENCE(2), Q(MWFLT*MEMLEN)
DIMENSION DQ (MEMLEN)

EQUIVALENCE (IQ(1), Q(1), DQ(1), LQ9))
EQUIVALENCE (LROOT, LQ(1)), (LLUMP, LQ(2))
CALL MZSTOR(ISTOR,CHNAME,CHOPT,FENCE,LQ(1),IQ(LR),LQ(LW),
+ LQ(LIM2),LQ(LAST))

is called oncy in the initialization phase. It defines the working store as follows:

ISTOR Store number. This is returned as zero in the first call.

CHNAME Name of the store for debugging.

CHOPT Option string. If this is ’Q’, the log level for the store is set to minimum logging.
FENCE Safety area preceding the store to protect against reference to LQ(0), LQ(-1) etc.
LQ(1) First word of the dynamic store, first permanent structural link.

LQ(LR) MAD uses IQ in this position, thus reserving eight structural links, LQ(1) through

LQ(8). First permanent reference link (no links reserved in MAD).

LQ(LW) First word of the working area. MAD uses IQ in this position, thus reserving no
reference links. The working space is used as explained in Section 1.3.5).

LQ(LIM2) Lowest position of the upper limit of division 2, to protect divisions 1 and 2 from being
squeezed out of existence by divisions created later. This parameter has no effect in
MAD, as no other divisions are ever created.

LQ(LAST) Last word of the dynamic store.

35.21 Print ZEBRA Version

CALL MZVERS

Prints the version of ZEBRA used.

35.22 Wipe Out Division

CALL MZWIPE(IDIV)

Wipes out all banks contained in division IDIV. MAD uses this to wipe out working space allocated
in division 1. Note that division 1 is also wiped out by changing the working space limit with a call
to MZWORK.

35.23. ALLOCATE WORKING SPACE 135

35.23 Allocate Working Space

CALL MZWORK(ISTOR,DQ(IF),DQ(IL),IFLAG)

is used to reserve or release working space. MAD uses this to move the top-of-stack pointer of the
working stack. Note that a call to MZWORK also wipes out division 1. The parameters of MZWORK are:

ISTOR Store number. Always zero in MAD.

DQ(IF) First word of working space. MAD uses DQ(1) in this position, thus the links reserved
by CALL MZSTOR are not changed.

DQ(IL) Last word of working space.
IFLAG Flag word with one of the values:
0 Define a new working space,
1 Vary length of the working space, keep links common to the old and new

setup intact.
2 Vary last word of working space, don’t change first word.

-1 Reset working space to null, i. e. no links and no data words.

35.24 Find Number of Banks in Linear List

N=NZBANK (ISTOR,LINK)

Returns the number of banks in a linear structure:
ISTOR Store number. Always zero in MAD.
LINK Pointer to first bank of the structure.

The variable N will contain the number of banks in the list.

35.25 Fatal Termination

CALL ZFATAL

is called by ZEBRA when an unrecoverable error occurs. It kills the current job.

35.26 Fatal Termination with Message

CALL ZFATAM(MSG)

is called by MAD when an unrecoverable error occurs. It kills the current job after printing the
message in the character string MSG.

136 CHAPTER 35. ZEBRA ROUTINES

35.27 Switch Processing Phase

CALL ZPHASE(IPHASE)

Tells ZEBRA in which phase the program is. The meaningful values for IPHASE are:
zero Initializing,
positive Running,
negative Cleaning up.

MAD does not use further conventions.

35.28 Change Bank Linkage

CALL ZSHUNT(ISTOR,LSH,LSUP,JBIAS,IFLAG)

Changes the linking of a bank:

ISTOR Store number. Always zero in MAD.

LSH Pointer to the bank to be relinked.

LSUP Pointer to the new supporting bank.

JBIAS Number of the new supporting structural link.

IFLAG If zero, only a single bank is relinked, otherwise the whole linear structure pointed at

by LSH is relinked.

35.29 Reverse Order of Linear List

CALL ZTOPSY(ISTOR,LLS)

reverses the order of banks in a linear structure, sitting in store ISTOR and pointed at by LLS.

Chapter 36. Other Routines External to MAD

36.1 GX Package, High-Level Plot Routines

The high-level plotting routines used by MAD are listed in table 36.1. They provide an easy interface
to the GKS system, and may be replaced for driving a different plotting system. For documentation
refer to the GXPLOT Manual [11].

Table 36.1: GXPLOT Routines called by MAD

Name | Purpose Section
GXASKU | Ask user for plot options -
GXCLOS | Close terminal work station -
GXCLRW | Clear open workstations, set picture name -
GXCUBI | Calculate third-order natural spline -
GXCUBV | Calculate value of third-order spline -
GXEOPN | Set logical unit number for a file -
GXFRM1 | Plot a frame with several axes, return windows -
GXINIT | Initialize plot package -
GXOPEN | Open terminal workstation -
GXPL Plot polyline with clipping -
GXPLT1 | Plot smoothed polyline (spline) with clipping -
GXPMSW | Plot software marker symbol -
GXPNBL | Find first and last non-blank in a string -
GXQAXS | Inquire axis parameters -
GXQCRV | Inquire curve set parameters -
GXQRVP | Inquire viewport ratio -
GXQVAR | Inquire selected variable value -
GXREST | Restore GKS settings -
GXSAVE | Save GKS settings -
GXSAXS | Set axis parameters -
GXSCRV | Set curve set parameters -
GXSDEF | Set undefined variables/restore defaults -
GXSVAR | Set selected variable value -
GXSVPT | Set workstation viewport -
GXSWND | Set window -
GXTERM | Terminate plot package -
GXTX Plot text, including greek characters etc. -
GXWAIT | Wait for user input while diplaying a frame -

137

138 CHAPTER 36. OTHER ROUTINES EXTERNAL TO MAD

36.2 GKS Plotting Routines

The low-level plotting routines used in the standard distribution of MAD are listed in table 36.2. For
documentation refer to the GKS Manual [10].

Table 36.2: GKS Routines Called by MAD

Name | Purpose Section
GPL Plot points -
GSCHH | Set character height -
GSCHXP | Set character expansion factor -
GSLN Set ... -
GSLWSC | Set ... -
GSMK Set mark character -
GSTXAL | Set text alignment -

36.3 EPIO Routines, Machine-Independent Binary I/O

The routines for machine-independen binary I/O used by MAD are listed in table 36.3. For documen-
tation refer to the EPIO Manual [13].

Table 36.3: EPIO Routines Called by MAD

Name | Purpose Section
BL0O32W | Convert 32 bit to native word -
CTOIBM | Convert floating point to IBM format -
EPEND | Terminate of machine-independent I/0 -
EPINIT | Initialize machine-independent I/0 -
EPOUTL | Write a record -
EPSETW | Set selected control word -
STOASC | Convert string to ASCII -

36.4. MISCELLANEOUS ROUTINES

36.4 Miscellaneous Routines

139

MAD uses a few minor routines from the CERN KERNLIB library. These are listed in table 36.4.

For documentation refer to the relevant CERN program library document [4].

Table 36.4: Miscellaneous CERN Library Routines Called by MAD

Package | Name | Purpose Section
F122 VZERO | Fill an array with zeroes -
VBLANK | Fill an array with Hollerith blanks -
VFILL | Fill an array with given word -
M101 SORTZV | Sort array -
M409 UCTOH | Copy character to Hollerith -
UHTOC | Copy Hollerith to character -
M421 JBIT Fetch bit from a word -
JBYT Fetch byte from a word -
SBITO | Clear a bit in a word -
SBIT1 | Set a bit in a word -
SBYT Store a byte in a word -
V300 UZERO | Clear an array to fill -
V301 UCOPY | Copy n words -
V304 IUCOMP | Look up a word in a table -
Z007 DATIMH | Date and time in Hollerith -
TIMEL | Time left for execution -
TIMEX | Time used for execution -
Z044 INTRAC | Identify interactive job -
Z100 JOBNAM | Retrieve job name -

Appendix A. An Example of a New Element: Wiggler

140

Appendix B. An Example of a New Module: Part List

141

Appendix C. Indexing Scheme for Symbolic Polynomials

The polynomial manipulation routines of MAD use a storage scheme for polynomials invented by
Giorgelli [9]. The monomials are ordered by their order; and within the order in lexicographical
sequence. The tables below list the monomials in this order.

C.1 First-Order Terms

index variables index variables index variables index variables index variables
1 z 2 Pa 3 Y 4 Py 5 t
6 Dt

C.2 Second-Order Terms

index variables index variables index variables index variables index variables
7 z? 8 TPy 9 zy 10 zp, 11 zt

12 zp, 13 P2 14 puy 15 papy 16 pgt

17 pups 18y 19 yp, 20yt 21 yp

22 p; 23 pyt 24 pyp: 25 2 26 tp,

271 p}

C.3 Third-Order Terms

index variables index variables index variables index variables index variables
28 29 z?p, 30 z%y 31 2%, 32 %t
33 z?p, 34 zp? 35 ap,y 36 zp,p, 37 zp,t
38 zp.p: 39 zy? 40 zyp, 41 zyt 42 zyp,
43 zp} 44 ap,t 45 azpyp 46 zt? 47 ztp,
48 zp; 49 p3 50 ply 51 plpy 52 pit
53 plp: 54 p.y’ 55 p.ypy 56 pLyt 57 payp:
58 p.p} 59 pupyt 60 pupyD: 61 p,t? 62 puip
63 p.p? 64 o° 65 y’p, 66 yit 67 ylp:
68 yp? 69 ypyt 70 ypyp: 1 yt? 2 ytp,
73 yp? 4 pd 5 pit 6 plp T p,t?
78 pytp, 79 pyp: 8 ¢ 81 tip, 82 tp?
83 p}

C.4 Fourth-Order Terms

index variables index variables index variables index variables index variables
84 z* 85 z°p, 86 z3y 87 2%p, 88 2%t

89 z°p, 90 =z%p? 91 z?p,y 92 2?p,p, 93 zlp,t

94 z?p,p, 95 zy? 96 z’yp, 97 zyt 98 z2yp,

99 z’p] 100 z2pyt 101 z2pyp: 102 z?¢? 103 =z%tp,
104 2%p? 105 zp 106 =2ply 107 xzplp, 108 =zpit

109 xzp2p 110 zp,y? 111 zp,yp, 112 zp,yt 113 zp,yp:

142

C.5.

114
119
124
129
134
139
144
149
154
159
164
169
174
179
184
189
194
199
204
209

C.5 Fifth-Order Terms

index variables

210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335

FIFTH-ORDER TERMS

zp. P
2D}
zyp’
zyp;
J)p Y tP t
zp?
Pipt
pip}
pip:
D2YD;
P2YD;
DzPylpy
PP}
y’pl
y’p;
YDy Py
yp}
Pf, tp,
PyD;

f o

135

T 4Pt

T 3Pz Dt
z*p?
z°p;

2’ plp;
2’p,p}
z*p,p;
z*yp?
2 yp]
T 2p Y tP t
2’ p}
zplp,
zp3p;
epip;
ep.yp;
TP, YP;
TP PylD:
zp.p}
zy’p2
zy’p}
TYPytp:
zyp}
331712, tpy
zpyp?
zp;

115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205

index

211
216
221
226
231
236
241
246
251
256
261
266
271
276
281
286
291
296
301
306
311
316
321
326
331
336

PPyt
zy®
zypyt
zpd
zpyp;
fo
iy’
pipy t
Doy’
DPzYpyt

variables
z*p,
2°p3
23y?
z°p,t
2”p?
2’p.y’
2’p,pyt
22y®
2’ypyt
mzpi
2°pyp;
zp;
zp;y’
PPyt
2p,y°
TP, Ypyt
Zp.ps
TP PyD;
zyt

2y pyt
zyps
2Ypyp;
zp;
zplp;
ztt

fd

116
121
126
131
136
141
146
151
156
161
166
171
176
181
186
191
196
201
206

index
212
217
222
227
232
237
242
247
252
257
262
267
272
277
282
287
292
297
302
307
312
317
322
327
332
337

TPy Py Dt
2y’ py
ZYPy Dy
zplt
zt?
p3y
DYDY
PAPyP:
DY’ Py
DaYDyD:
PaPit
Pot®
¥°py
Y Py
ypat
yt®

3
pyt®
tapt

variables
zty
2°p.y
z°yp,

T pypt
z’ply

2’ P Ypy
2’ Pa Py
22y’ py
22 Ypyp:
2’plt
z?t?
zpdy
TPSYPy
2plpy e
2Psy’py
EPsYPyP:
ep,pit
zp,t3
2y°p,
2y py P
zypat
zyt®
zpit
zp,t
zt°p,
P2y

W

117
122
127
132
137
142
147
152
157
162
167
172
177
182
187
192
197
202
207

index
213
218
223
228
233
238
243
248
253
258
263
268
273
278
283
288
293
298
303
308
313
318
323
328
333
338

zp,t?
zy’t
zyt?
a)pzpt
zt’p,
Pipy
Pyt
yom
Pay’t
Pzyt’
PaDLD:
Dot’py

YDLp:
yt*p,
Pipt

p Y t2P t

t*p}

variables
z*p,
2°p,py
3yt
z3t?

2’ p2py
2’ p,yt
2%p, 12
z2y’t
ziyt?
a:zpzpt
zitip,
ﬁpipy
zpryt
zp2t?
ep.y’t
zp.yt’
TPs LDt
TP, 2P
zy3t
zy?t?
zYp: e
zyt’p,
a)pzpt
wpytzpt
2t*p;
P:Py

118
123
128
133
138
143
148
153
158
163
168
173
178
183
188
193
198
203
208

index
214
219
224
229
234
239
244
249
254
259
264
269
274
279
284
289
294
299
304
309
314
319
324
329
334
339

143

zp,tp;
ﬁyzpt
zylp;
zp,t?
ztp?
pit

Pazp Yp:
Pitp:
Pay’Pe
Dz Ylpy
Doyt
Patp}
Y P
yztpt
ypyt?
ytp;
pat?
Dy tpt2
tp;

variables
z*t
z3p,t
2°yp,
z3tp,
zp2t
2’ p.yp
2’ pytp;
22y’p,
z’ytp,
2,1
e*tp}
zpit
zp2yp:
zpitp;
2pay’pr
TP, Ytp:
2Py pyt’
zp,tp}
2y°p,
zy’tp,
zyp,t?
zytp;
zpit?
zpytp;
ztp}
it

144 APPENDIX C. INDEXING SCHEME FOR SYMBOLIC POLYNOMIALS

340 pip 341 piy? 342 plyp, 343 plyt 344 plyp.
345 plp? 346 plp,t 347 plpyp: 348 pit? 349 pitp,
350 pip? 351 ply? 352 ply’py 353 ply’t 354 ply’p
355 plypl 356 plyp,t 357 plypyp: 358 plyt? 359 plytp,
360 plyp? 361 plpd 362 plpit 363 plplp: 364 pip,t?
365 plpytp: 366 pip,p? 367 pit’ 368 pit’p, 369 pltp}?
370 plp} 371 p.y* 372 p.y’py 373 p.y’t 374 p.y’pe
375 p.y’pl 376 p.y’pyt 37T poy’pyp: 378 poy’t? 379 p.y’tp,
380 p.y’p} 381 p.ypd 382 pLypit 383 p.ypip: 384 p.yp,t’
385 p.ypytpe 386 p.yp,p; 387 pyt® 388 p.yt’p, 389 poytp;
390 p.yp} 391 p.p; 392 p,pit 393 p.pipe 394 p,p2t?
395 p.pitp, 396 p.pip; 397 p.pyt® 398 p.pyt’p. 399 p.pytp;
400 p.p,p} 401 p,t* 402 p,t3p, 403 p,t*p? 404 p,tp?
405 p,p; 406 o° 407 y'p, 408 y*t 409 yp,
410 y°pl 411 y’pyt 412 y*pyp: 413 332 414 yitp,
415 y3p? 416 y°pd 417 y’plt 418 y’plp: 419 y?p,t?
420 y’p,tp: 421 y’p,p? 422 yt3 423 y’tip, 424 y*tp?
425 y*pd 426 yp; 427 ypit 428 ypip, 429 ypit?
430 ypltp, 431 ypp; 432 yp,t® 433 yp,t’p, 434 yp,tp;
435 yp,p} 436 yt* 437 ytip, 438 yt?p? 439 ytp?
440 yp; 441 pf 442 pit 443 pip, 444 pit?
445 pitp, 446 pip; 447 p2t® 448 plt’p, 449 pitp;
450 plp} 451 p,t* 452 p,t3p; 453 p,t’p? 454 p,tp?
455 p,pt 456 5 457 tip, 458 t3p? 459 ¢2p?
460 tp} 461 p}

C.6 Sixth-Order Terms

index variables index variables index variables index variables index variables
462 z° 463 z°p, 464 z°y 465 z°p, 466 5t
467 z°p, 468 z*p? 469 z*p,y 470 2%*p,p, 471 zp,t
472 z*p.p 473 z2%y? 474 z*yp, 475 2yt 476 =z yp,
477 2*pl 478 a%p,t 479 2%*p,p 480 z*t? 481 zitp,
482 z*p? 483 z°p? 484 z3ply 485 z°plp, 486 z3pit
487 2*plp, 488 z®p,y® 489 2%p,yp, 490 z3p,yt 491 z*p,yp:
492 2°p,p’ 493 z°p,pyt 494 2°p,p,p: 495 2%p,t? 496 z%p,tp,
497 z%p,p? 498 z3y® 499 2%y’p, 500 =z3y%t 501 z3y’p,
502 z*yp? 503 z®yp,t 504 z®yp,p: 505 z3yt? 506 z3yip,
507 z3yp? 508 z°p} 509 z®plt 510 «°plp, 511 a®p,t?
512 2°p,tp, 513 z®p,p? 514 3 515 z%t’p, 516 2%tp?
517 z°p3 518 az?p? 519 z?piy 520 z’plp, 521 z?p3t
522 z’plp, 523 z?piy? 524 z?plyp, 525 z?piyt 526 2%piyp,
527 &’pip] 528 z’plp,t 529 z’plp,p: 530 z’pit? 531 z’pitp,
532 =z’plp? 533 =zip,y® 534 2?p,y’p, 535 z2p,y’t 536 zip,yip,
537 2’p.yp] 538 z’p,yp,t 539 2’p,ypyp: 540 z?p,yt? 541 z2p,ytp,
542 z’p yp? 543 2’p,pd 544 2’p,pit 545 z’p,plp: 546 z’p,p,t*
547 2 p,pytp: 548 z’p,p,p; 549 =z’p,t3 550 x’p,tip, 551 x’p,tp?
552 =z’p,p? 553 z2y* 554 z?y’p, 555 z2y%t 556 ziy®p,
557 z*y’pl 558 z?y’p,t 559 2%y’p,p 560 zy’t? 561 xziy’tp,
2 2

562 z’y?p? 563 z’ypd 564 z’yplt 565 ’yplp, 566 z’yp,t’

C.6.

567
572
5T7
582
587
592
597
602
607
612
617
622
627
632
637
642
647
652
657
662
667
672
677
682
687
692
697
702
707
712
17
722
727
732
737
742
47
752
757
762
767
772
(i
782
787
792
797
802
807
812

SIXTH-ORDER TERMS

2’ ypytp;
2?yp}

z 2P§ tpy
2’ pyp}
z?p}
EPap:
zpip;
epip;
zpiyp,
eplyp;
eplpytp:

TP YPytp:
TP, yp?
TP PP
TPy}
2P, P}
zy°p?
zy’p;
2y’ pytp:
zy’p}
zYpatp:
zYpyp;
zyp;
33175 tp,
epp}
zpy Pt
ztp?

pit
Doy
Datp:
Py’
piytp,
Pipy t*
pitp;
P2y
piy’tp,
Piypyt’
PAytp;
pipit?
Papytp:
pitp}
D2y D
Pay’tp,
Doy pyt?
DYt}
PayYPat?
DaYPytp;

568
573
578
583
588
593
598
603
608
613
618
623
628
633
638
643
648
653
658
663
668
673
678
683
688
693
698
703
708
713
718
723
728
733
738
743
748
753
758
763
768
773
778
783
788
793
798
803
808
813

2> yp,p;
z? p;
2’pyp;
22t

zp}
eply’
zp3p,t
eply®
eplypyt
ep2pd
epipyp;
zp,y*
2.y’ pyt
2P YPS
TP YDy D}
zp, P,
ZP. DD}
zp,tt
zy®
zy’pyt
zy’pd

2y’ pyp}
zyp,
zypip?
zyt?
zp]
epSp;
zp,t?
zts

p;

Pipt
DaD;
PaD;
piyp:
p3yp;
PEPytp:
pip;
p2y’p}
p2y’p;
Pypytp:
piyp}
Pipf, tp,
PipyP;
pip;

DY Dytp:
P.YD}
DYDILD:
DaYPyP}

569
574
579
584
589
594
599
604
609
614
619
624
629
634
639
644
649
654
659
664
669
674
679
684
689
694
699
704
709
714
719
724
729
734
739
744
749
754
759
764
769
774
779
784
789
794
799
804
809
814

22ytd
z’pit
22 Py £
z%t3p,
zpLy
zplyp,
epipyp:
2p2y’py
ep2YpyP:
epiplt
zplt?
2psy°py
2Py’ Py P
zp,ypLt
zp,yt®
zp,pt
zp,pyt®
TPy tapt
2y py
2y pyp:
zy’plt
zy?td
zypst
zyp,t
ﬁytapt
zpyt
zplt®
J’Pyt?’Pt
zt*p,
f
pay’
P;Pyt
p3y®
PiYpyt
242
pEpyp}
piy*
Py*pyt
piyps

2 2
PIYPyD;
pip;
J oS A
pit*
Doy’
DY Pyt
DY’ PS
P2y’ PyD}
DaYP,
D2YPLD;
poyt*

570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815

wzytzpt
a:zpipt
mzpytzpt
z?t?p?
ZPipy
eplyt
zp3t?
zply’t
zpiyt?
ep2plp:
zplt’p,
zp,y°t
eyt
TP YD Dt
Zp.yt*p,
2Py PSP
2Py Pyt Py
zp,t2p?
zy*t
zy>t?
2y’ plp;
myztzpt
zYpSp,
zypyt*p,
zyt’p;
a)pzpt
a:pztzpt
epyt*p;
2t®p;
DY
DaYDy
PaDyPe
P3y°py
PIYPyD:
pipit
pt®
Piy°py
P2y’ pyp:
piypit
piyt®
pipit
pipyt?
Pi t3Pt
P2y Py
DY PyD:

571
576
581
586
591
596
601
606
611
616
621
626
631
636
641
646
651
656
661
666
671
676
681
686
691
696
701
706
711
716
721
726
731
736
741
746
751
756
761
766
771
776
781
786
791
796
801
806
811
816

145

DY
PaYpy Dy
Pyt P}

146 APPENDIX C. INDEXING SCHEME FOR SYMBOLIC POLYNOMIALS

817 p.ytp} 818 p,yp; 819 p,p} 820 p,pit 821 p.pip:
822 p.pit? 823 p.pitp, 824 p.pip? 825 p,pyt® 826 p.pit’p,
827 p.pitp} 828 p.pip} 829 pyp,t* 830 pupyt’p: 831 p.pyt’p;
832 p.pytp? 833 p.pyp; 834 p,t° 835 p,.tip, 836 p,t3p?
837 p,tip? 838 p,tp? 839 p,p’ 840 y° 841 p,
842 ySt 843 y°p, 844 y*pl 845 yip,t 846 y*pyp:
847 ytt? 848 yttp, 849 y*p? 850 y°p? 851 y°plt
852 y’plp, 853 y’p,t’ 854 y’p,tp, 855 y°p,p? 856 y3t®
857 yitip, 858 yitp? 859 y®p? 860 y’p; 861 y’pit
862 y’pip, 863 y’pit’ 864 y’pltp, 865 y’plp; 866 y’p,t°
867 y’p,t’p, 868 y’p,tp? 869 y’p,p} 870 yitt 871 y?t3p,
872 y*tip? 873 y’tpd 874 y’pt 875 yp; 876 yp,t
87T yp,pe 878 ypit’ 879 ypitp 880 ypip; 881 ypit®
882 yplt’p, 883 ypitp; 884 ypip} 885 ypyt* 886 ypyt’p,
887 yp,t’p; 888 ypytp} 889 yp,p; 890 yt® 891 yt*p,
892 yt3p? 893 yt’p? 894 ytp? 895 yp’ 896 pS

897 pit 898 pip. 899 p,t? 900 p;tp, 901 pip;
902 pit? 903 pit’p, 904 pitp; 905 pip} 906 plt*
907 plt’p, 908 pit’p; 909 pltp} 910 plp; 911 p,t°
912 p,tip, 913 p,t*p} 914 p,t*p} 915 p,tp} 916 p,p;
917 ¢ 918 t°p, 919 t*p? 920 t3p3 921 t*p}

922 tp? 923 p¢

Bibliography

[1]

[2]

[13]

[14]

[15]

[16]
[17]

K. L. Brown, A First- and Second-Order Matriz Theory for the Design of Beam Transport Systems
and Charged Particle Spectrometers. SLAC-75, Revision 3, 1972.

K. L. Brown, D. C. Carey, Ch. Iselin,and F. Rothacker, TRANSPORT — A Computer Program
for Designing Charged Particle Beam Transport Systems. CERN 73-16, revised as CERN 80-4,
CERN, 1980.

R. Brun, J. Zoll, ZEBRA User Guide, CERN Program Library Q100.

CERN Program Library, Collection of Short Writeups. Available from the CERN Program Li-
brary.

A. Chao. Evaluation of beam distribution parameters in an electron storage ring. Journal of
Applied Physics, 50:595-598, 1979.

Ph. Defert, Ph. Hofmann, and R. Keyser. The Table File System, the C Interfaces. LAW Note 9,
CERN, 1989.

M. Donald and D. Schofield. A User’s Guide to the HARMON Program. LEP Note 420, CERN,
1982.

A. Dragt. Lectures on Nonlinear Orbit Dynamics, 1981 Summer School on High Energy Particle
Accelerators, Fermi National Accelerator Laboratory, July 1981. American Institute of Physics,
1982.

Giorgelli, Comp. Phys. Comm., 16, (1979), pg. 331.
The Graphical Kernel System (GKS). ISO, Geneva, July 1985. International Standard ISO 7942.
H. Grote. GXPLOT User’s Guide and Reference Manual. LEP TH Note 57, CERN, 1988.

H. Grote, F. C. Iselin, The MAD Program (Methodical Accelerator Design) Version 8.10, User’s
Reference Manual, CERN/SL/90-13 (AP), Rev. 3.

H. Grote, I. McLaren, EP Standard Format Input/Output Package, CERN Program Library
Long Write-Up 1101.

H. Grote, F. C. Iselin, The MAD Program (Methodical Accelerator Design) Version 8.10, Physt-
cist’s Reference Manual, to be published.

F. Ch. Iselin, Lie Transformations and Transport Equations for Combined- Function Dipoles, Par-
ticle Accelerators, 1985, 17, 143-155.

F. James, MINUIT long write-up. CERN Program Library D506.

L. C. Teng, Concerning n-Dimensional Coupled Motion. FN 229, FNAL, 1971.

147

Index

AA, 43, 50 ASSIGN, 14, 62
AAATTR, 43, 44 ASUBE, 35

AABOOK, 43, 44 ASUBP, 35

AACMND, 43 attribute, 3, 11, 12, 15
AACOPY, 43 data group, 15
AADROP, 43, 45 link, 15
AADUMP, 43, 45 name, 31
AAELEM, 43 pointer, 29
AAEXEC, 43, 44, 47, 54, 55, 58 average radius, 39
AAFATL, 43, 46 AXATTR, 58
AATNFO, 43, 46 AXBANK, 58
AAINIT, 43, 50, 58, 80, 123

AAMAIN, 43 bank, 3

AAMARK, 43, 47 address, 3
AAOPTS, 43 layout, 6
AAPARA, 43 status, 27

BANKHEAD, 12, 15
base address, 3
BCURRENT, 31

AAPDRP, 43, 47
AAPMOD, 43, 47

AAPROC, 43
MREAD, 43 EEAM, 14, 30, 31, 43, 47, 54, 55
AARUNS, 43 ea?Lw 20
AASERV, 4 ’
\ASET a433 attribute, 18
) expansion, 25
AASMOD, 43, 47 refI:erence ,18
9
ﬁiiiiia ig size, 31, 38
’ BEAMBEAM, 13, 106, 114, 123

AAWARN, 43, 46 BETA. 31
ABS(X), 17 beta,31
ACTION, 55, 56 BETA0. 14
action, 13 BETX ,33
active process, 37 BETX,O 32
address, 3 BETY ,33

of a linear structure, 4 BETY,O 39
ALFA, 38 BIG 7,

9
ALFX, 33 BLO32W, 138
ALFX0, 32 BM, 48
9

ALFY, 33 BMPM, 14, 48
ALFYO, 32 BUNCH, 30
alias bit, 27, 80 bunch
AMASS, 30 current, 30
AMUO, 35 flag, 30
AMUZX, 33 length, 30
AMUXO, 32 BXMAX, 38
AMUY, 33 BYMAX, 38
AMUYO, 32
ARAD, 31 CALL, 14, 62
ARCHIVE, 14, 62 CALLSUBROUTINE, 13
ASIN(X), 17 CELL, 14, 82

148

INDEX

CHARACTER, 7, 119-122
character, 9
data, 7
CHARGE, 30
charge, 30
CHINIT, 123
chromaticity, 38
CIRC, 33
class
bit, 27, 80
object, 11
pointer, 29
CLIGHT, 35
CMDGROUP, 15
co, 49
COCORR, 49
COFACT, 34
COGDIS, 49
COGKIK, 49
COGMON, 49
COLDIS, 49
COLORB, 49
COMAIN, 49
COMDIS, 49
COMICA, 49
command, 15
attribute, 15
bank, 11, 15
dictionary, 13
pointer, 29
common blocks, 29
COMORB, 49
CONSTANT, 13
constants, 35
CONSTRAINT, 14, 82, 83
constraint
attribute, 19
bank, 19
CONTINUE, 14
control flags, 37
COPDIS, 49
COPKIK, 49
COPMON, 49
CORDIS, 49
CORKIK, 49
CORMON, 49
CORRECT, 14, 49
corrector

and monitor bank, 29

pointer, 29

strength, 26

table, 26, 37
cos(X), 17
COSKIK, 49
COSMUX, 38
COSMUY, 38
COTBLE, 49
COUPLE, 14, 82
coupling, 37
COWDIS, 49
COWKIK, 49
COWMON, 49
CPFLAG, 37
CPLXT, 37
CPLXY, 37
CTOIBM, 138
current per bunch, 30
CURRNT, 30
CYCLE, 80

D, 62-65

damping partition numbers, 31

data
bank, 3

object directory, 20, 21

structure, 4, 5, 10

type, 9, 15
DATIMH, 139
DC, 50, 98
DCATTR, 15, 50
DCBEAM, 50
DCCONS, 50
DCFORM, 50
DCINDX, 50
DCINIT, 50
DCLIST, 50
DCNAME, 50
DCRANG, 50
DCREPT, 50
DCSTRG, 50
DCVREF, 50
DDISP(6), 34
DDISPO(6), 33
DEBUG, 34
default

first, 11

pointer, 29

second, 11, 44
defer bit, 27, 60

deferred expression, 16, 60

definition, 15

149

150

DELTA, 39
DELTAP, 54
DELTAT, 54
DI, 51
DIADD, 51
dictionary, 13
DIDEFI, 51
DIDROP, 51
DIFIND, 51, 52
DILOOK, 51
DIMAKE, 51, 52
dimension, 31
DINAME, 51, 52
directory, 21
entry, 22
handle, 21, 52
index, 22
DIREFE, 51, 52
DISP(6), 33
DISPO(6), 33
dispersion, 38
division, 3, 7
DMUX, 33
DMUXO, 33
DMUY, 34
DMUYO, 33
DO, 13, 43
DOALI, 37
DOCAV, 37
DOFLAG, 37
DOFLD, 37
DOKICK, 37
DORAD, 37, 38
DOUBLE, 34

DOUBLE PRECISION, 7, 122
double precision, 7, 9

down link, 4
DPHI, 26
DPSI, 26
DQ, 6, 7

DRIFT, 13, 106, 114

drop, 8

drop bit, 27, 45
DS, 26
DTHETA, 26

DX, 26
DXMAX, 38

DY, 26
DYMAX, 38
DYNAMIC, 14, 69

dynamic
allocation, 3

data structure, 3

link, 4

store, 7
DZ, 3
DZSHOW, 127

EALIGN, 14, 57
ECHO, 34
ECOLLIMATOR, 13
EFCOMP, 14, 57
EFIELD, 14, 57
EIGEN, 53
ELAMDA, 35
electron radius, 31
element
definition, 11
pointer, 29
ELMNAM, 118

ELSEPARATOR, 13, 106

EM, 53
EMASS, 35
EMCE2I, 53
EMCI2T, 53
EMCT2I, 53
EMDAMP, 53
EMEMDO, 53
EMEMGO, 53
EMENDO, 53
EMENGO, 53
EMENPR, 53
EMENSV, 53
EMEVDO, 53
EMEVGO, 53
EMEVPR, 53
EMEVSV, 53
EMINIT, 53
EMIT, 53
emittance
horizontal, 30
longitudinal, 30
vertical, 30
emittance flag, 31
EMNORM, 53
EMSSIG, 53
EMSUMM, 53
EMTWDO, 53
EMTWGO, 53
EMTWPR, 53
EMTWSV, 53

INDEX

EN, 54
ENBEAM, 54
END, 82
ENDDO, 13
ENDEDIT, 14
ENDHARMON, 14
ENDMATCH, 14
ENDSTORE, 13
ENDSUBROUTINE, 13
ENDTRACK, 14, 113
ENDUMP, 54
ENERGY, 30
energy, 30
error, 39
spread, 30
ENFIX, 54
ENFLAG, 54
ENFREQ, 54
ENGET, 31, 54
ENMAIN, 54
ENPRNT, 54
ENPUT, 31, 47, 55
ENRANG, 54, 55
ENSBET, 54
ENSPCA, 54
ENSPLT, 54
ENSRNG, 55, 56, 83
ENSTYP, 56, 83
ENUSE, 54
ENVELOPE, 53
EOPT, 57
EOPTION, 14
EPEND, 138
EPINIT, 138
EPOUTL, 138
EPRINT, 14, 57
EPSO0, 35
EPSETW, 138
ER, 57
ERAD, 35
ERALCA, 57
ERALIG, 57
ERFCCA, 57
ERFCOM, 57
ERFICA, 57
ERFIEL, 57
ERLIST, 57
ERMAIN, 57
EROPT, 57
ERPRNT, 57

ERRF, 123
ERROR, 37
error, 37
ERSAVE, 57
ESAVE, 14, 57
ET, 30, 31

EX, 30, 58
EXBIN, 58
EXCITE, 14, 62
EXCONS, 58
EXCOPY, 58
EXDUMP, 58, 59

EXEVAL, 16, 58, 59, 61, 119

EXEVL1, 58
EXFILL, 59
EXHALF, 58
EXINIT, 58
EXLKEX, 58, 59
EXLKVR, 58, 59
EXLOAD, 58
EXMAK1, 58, 60, 61
EXMAKE, 58—60
EXN, 30
EXOPER, 58, 59
EXORDR, 60, 61
EXP(X), 17
EXPGROUP, 16
EXPRESS, 58-61
expression
bank, 16, 17
group, 16
pointer, 29
table, 59, 60
EXREAD, 58, 60
EXREFE, 58
EXSTRG, 58, 60
EXUNST, 58
EXUPDT, 58, 61
EY, 30
EYN, 30

F, 62, 64, 65
FACTOR, 123
FALFA, 35
fatal error, 37
FBCH, 30
FDJAC, 82
FDJAC2, 123
FENCE, 6
field error, 26
pointer, 29

151

152

file, 39

first default, 11
FIX, 14, 82

FL, 62
FLASSI, 62
FLCLOS, 62, 63
FLCSYS, 62
FLDELE, 62, 63
FLDUMP, 62
FLEND, 62, 63
FLINIT, 62, 63
FLLOAD, 62
FLMAIN, 62
FLNAME, 62, 63
FLNFIX, 64, 65
FLNSET, 62, 64, 65
FLOPEN, 62, 64
FLRTFS, 62
FLSYST, 62, 65
FLTABLE, 62
FLTELL, 62
FLTEXT, 62, 65
FLWTFS, 62

FM, 69, 75
format code, 3, 9
FORTRAN 77, 3
FP, 69, 75

FRAD, 30
FREQO, 30
FRNDM, 123

FZ, 3

FZENDI, 127, 128
FZENDQ, 127, 128
FZFILE, 127, 129
FZIN, 127,129
FZOUT, 127, 130

GAMMA, 30
GAMTR, 39

garbage collection, 8

GAUSSQ), 17
GETDISP, 49
GETKICK, 14, 49
GETORBIT, 14, 49
GPL, 138
GRNDM, 123
GSCHH, 138
GSCHXP, 138
GSLN, 138
GSLWSC, 138
GSMK, 138

GSTXAL, 138
GXASKU, 137
GXCLOS, 137
GXCLRW, 137
GXCUBI, 137
GXCUBV, 137
GXEOPN, 137
GXFRM1, 137
GXINIT, 137
GXOPEN, 137
GXPL, 137

GXPLT1, 137
GXPMSW, 137
GXPNBL, 137
GXQAXS, 137
GXQCRV, 137
GXQRVP, 137
GXQVAR, 137
GXREST, 137
GXSAVE, 137
GXSAXS, 137
GXSCRV, 137
GXSDEF, 137
GXSVAR, 137
GXSVPT, 137
GXSWND, 137
GXTERM, 137
GXTX, 137

GXWAIT, 137

HA, 66
HA4ANA, 66
HA4SUM, 66
HAATUN, 66
HABEGN, 66
HACELL, 66
HACFIT, 66
HACHCL, 66
HACHRM, 66
HADBET, 66
HAFCN, 66
HAFUNC, 66
HALONG, 66
HAMAIN, 66
HAPAVE, 66
HAPRNT, 66
HARESC, 66
HARESO, 66
HARMON, 14, 37, 66
HARSIG, 66
HASHRT, 66

INDEX

INDEX

HASTRG, 66
HATHIN, 66
HATUNE, 66
HAVARY, 66
HAWEIG, 66
HBAR, 35
HCELL, 14, 66

HCHROMATICITY, 14, 66

HELP, 14, 101
HFUNCTION, 66
HFUNCTIONS, 14
HKICK, 106, 114
HKICKER, 13
HLEVEL, 14
HM, 75
HMONITOR, 13
Hollerith, 7
horizontal
beam size, 38

chromaticity, 38

dispersion, 38
emittance, 30
orbit, 38
tune, 38

HP, 75

HQR2, 123

HRESONANCE, 14, 66

HTLSQ, 123
HTUNE, 14, 66
HVARY, 14, 66
HWEIGHT, 14, 66

I/O stream, 39
IADIM1(i), 31
IADIM2(i), 31
IADIM3(i), 31
IATYPE(i), 31
IBS, 14, 116
ICMDFL, 34
ICODEL, 18
ICODE2, 18
IDEFFL, 34
identifier, 9
IETFLG, 31
IEXPFL, 34
IKEYFL, 34
ILINFL, 34
IMODUL, 37
IMPLICIT, 9
INCREMENT, 14, 62
index bank, 21

INFO, 35
INITS5, 123
initial values, 37
input, 39
INSTALL, 14, 80
INSTRUMENT, 13

INTEGER, 119, 120, 122
integer attribute, 16

INTER, 34
INTRAC, 139
INVAL, 37
IPLFLG, 37
IPNFLG, 31
1Q, 4,6, 7
IQLOG, 39
IQPNCH, 39
IQPR2, 39
IQPRNT, 39
IQREAD, 39
IQTTIN, 39
IQTYPE, 39
IRG1, 36
IRG2, 36
IRNDM, 123
IRNGEN, 123
IUCOMP, 139
IWORK, 7
IXOPR, 58
IXSUBi, 58

JBIT, 22, 139
JBYT, 22, 139
JOBNAM, 139

KATNAM(i), 31
KEYEDIT, 13, 67
KEYGROUP, 12

KEYWORD, 4, 11, 13, 31, 44, 50, 67

keyword, 11
attribute, 12
bank, 12
data, 31

directory, 21, 68

pointer, 29
tree, 11
KICK, 106, 114

KICKER, 13
known bit, 28
KW, 67
KWDIM, 67
KWDUMP, 67

154

KWGET, 31, 44, 50, 67

KWGRP, 67
KWMAIN, 67
KWMAKE, 67, 68
KWPUT, 67, 68

L, 3

L4, 69
LABETA, 69, 71
LABRKS, 69
LACHRM, 69, 71
LADC2R, 69, 78
LADEIG, 69
LADPU2, 69, 73
LADPU3, 73
LADPU4, 73
LADYNA, 69
LALUMP, 69, 70
LAMAIN, 69
LAMOVE, 70
LASC2R, 72, 78
LASEIG, 69, 71
LASPU2, 72
LASPU4, 72
LASPUC, 72
LASPUG, 72
LASPUR, 69
LASTAT, 69
LATRNS, 69

lattice function, 32, 33

LATURN, 69, 70
LAXFRM, 70

LCALI, 29, 77, 118

LCATT, 29
LCATTR, 18
LCCLS, 29
LCCMD, 15, 29

LCCoM, 29, 77, 118

LCDEF, 29

LCELM, 29, 77, 79, 99, 100, 118

LCEXP, 17, 29

LCFLD, 29, 77, 118
LCKEY, 12, 29, 44, 50
LCSEQ, 22, 24, 29, 70, 81, 110

LCSPL, 29
LCSRC, 29
LCVAR, 19, 29
LDBNK, 21
LDBNK (4), 29
LDIR(4), 52
LDKEY, 21

LDKEY (4), 29
LEVEL, 14

LINE, 13, 22, 80, 101

linear structure, 4
link, 3, 9

area, 3, 7, 8

part of bank, 8

linked list, 4
LINNAM, 36
LIST, 13, 80
LLUMP, 6

LM, 74
LMARB, 74
LMBEND, 74
LMCANX, 74
LMCAT, 74, 75
LMCLOR, 74, 75
LMCOPY, 74, 75
LMCORR, 74

LMDIF, 14, 82, 123

LMDPRT, 74, 78
LMDRF, 74
LMDSP1, 74
LMDSP2, 74

LMELEM, 74, 76, 114

LMEXPO, 74, 76
LMFIXP, 74, 77
LMFRG1, 74
LMFRG2, 74
LMG1MY, 74
LMINY, 74, 77
LMLUMP, 23, 24
LMMAP, 74, 77
LMMASK, 74, 77
LMMULT, 74
LMNEWT, 74
LMOCT, 74
LMONE, 74, 78
LMPAR, 82, 123
LMPRNT, 74, 78
LMQUAD, 74
LMREFL, 74, 78
LMREVF, 74, 78
LMRF, 74
LMSAND, 74, 78
LMSECT, 74
LMSEP, 74
LMSEXT, 74
LMSOL, 74
LMSPRT, 74, 78

INDEX

LMSROT, 74
LMTILT, 74, 79
LMTRAK, 74
LMUSER, 74, 79
LMYROT, 74

LN, 80
LNBEAM, 80
LNCHCK, 80
LNDUMP, 81
LNEBGN, 80
LNECYC, 80
LNEINS, 80
LNEMOV, 80
LNEREF, 80
LNEREM, 80
LNFORM, 80
LNINIT, 80
LNLIST, 80
LNMAIN, 80
LNMAKE, 80
LNMARK, 80
LNPMOD, 80
LNREFE, 80, 81
LNSEQ, 80
LNXLST, 80
LNXPND, 80
LNXPUT, 80
LNXRES, 80
LNXSEQ, 80

log file, 39
LOG(X), 17
LOGICAL, 119, 122
logical attribute, 16
longitudinal emittance, 30
LQ, 4,6,9
LROOT, 6, 10, 81
LSALI, 25, 29
LSALI), 26
LSCOM, 29
LSDIR, 25, 29
LSFLD, 25, 26, 29
LSFLG, 25, 29
LSNUM, 25, 29
LSSPL, 29

LUMP, 13, 47, 69, 80
LZFIND, 127, 130
LZLAST, 127, 130
LZLONG, 127, 130

M, 9
M66, 84

M66ADD, 84
M66BYY, 84
M66CPY, 84, 85
M66DIV, 84, 85
M6GEXP, 84, 85
M66INY, 84, 85
M66MAK, 84-86
M66MPY, 84, 86
M66MTR, 84, 86
M66GNRM, 84, 86
M6GONE, 84, 86
M66PRT, 84, 87
M66REF, 84, 87
M66SCL, 84, 87
M66STA, 84, 87
M66SUB, 84, 87
M66TP, 84, 88
M66TRM, 84, 88
M66ZRO, 84, 88
machine radius, 39
MAD data type, 15, 31
main beam line, 36
pointer, 29
MAPELM, 32, 108, 110
MAPTRN, 32, 107-110
MARKBITS, 27
MARKER, 13
mass, 30
master keyword, 11
MATCH, 14, 22, 37, 82
mathematical constant, 36
MATRIX, 13, 106
MAX (X,Y), 17
MAXAT, 31
MAXEXP, 58
MAXMUL, 26
MAYCPL, 37
MBAT, 12, 15, 20, 23
MBFRM, 12, 15, 20, 23
MBLN, 15
MBNAM, 12, 15, 20, 23
MBPR, 12, 15, 20, 23
MBSP, 12, 15, 20, 23
MCF1, 15
MCF2, 15
MCFIL, 63, 64
MCNAM, 9, 24, 25
MCODE, 23
MCRNG, 24, 25
MCSEQ, 22

155

156

MCSIZ, 15
MCTYP, 15
MCVAL, 15
MCWRD, 9
MDBNK, 21
MDKEY, 21
MEMLEN, 6, 7
MEMMIN, 6, 7
MEMORY, 6, 10
MFRST, 23
MICADO, 14, 49
MIGRAD, 14, 82
MIN(X,Y), 17
misalignment, 26
bank, 26, 29
pointer, 29
MKDIM1, 12
MKDIM2, 12
MKDIM3, 12
MKF1, 12
MKF2, 12
MKNAME, 12
MKSIZ, 12
MKTYPE, 12
MLF1, 20
MLF2, 20
MLFM, 20
MLHD, 20
MLUMP, 23
MOCC1, 23
MOCC2, 23
modify bit, 28
module, 13
momentum, 30

compaction, 38

MONITOR, 13
monitor
pointer, 29
reading, 26
table, 26, 37
MOPTC, 23
MOVE, 14, 80
MPCOR, 14
MPEDI, 14
MPELM, 13
MPENV, 14
MPERR, 14
MPFIL, 14
MPHAR, 14
MPKEY, 13

MPLIE, 14
MPLIN, 13, 20, 23
MPMAT, 14
MPPAR, 13
MPPLT, 14
MPPOL, 14
MPRNT, 23
MPSRYV, 14, 43
MPSUB, 13, 43
MPSUR, 14
MPTRK, 14
MPTWS, 14
MREAL, 9, 17
MREDX, 26
MREDY, 26
MREFE, 23
MREX, 26
MREY, 26
MRKEY, 11
MSALI, 24, 25
MSBN, 24, 25
MSCND, 23
MSCOM, 24-26
MSCOR, 24-26
MSDIR, 24, 25
MSELM, 24-26
MSF1, 24, 25
MSF2, 24, 25
MSFLD, 24, 25
MSFLG, 24, 25
MSG, 135
MSLIE, 24, 25
MSMAP, 24, 25
MSMON, 24-26
MSNUM, 24, 25
MSR1, 24, 25
MSR2, 24, 25
MSRN, 24, 25
MSUP, 24, 25
MSYM, 24, 25
MT, 82
MTACON, 82, 83
MTBTIN, 82
MTBTTK, 82
MTCELL, 82
MTCOND, 83
MTCONS, 82
MTCPLE, 82
MTDERI, 82
MTEND, 82

INDEX

INDEX

MTFCN, 82
MTFIX, 82
MTGETI, 82
MTHESS, 82
MTINIT, 82
MTLINE, 82
MTLMDF, 82
MTMAIN, 82, 83
MTMIG1, 82
MTMIGR, 82
MTMTCH, 82
MTPINI, 82, 83
MTPMOD, 82
MTPRNT, 82
MTPSDF, 82
MTPUTI, 82
MTRAK, 23
MTRAZZ, 82
MTRMAT, 82
MTSIM1, 82
MTSIMP, 82
MTTMAT, 82
MTVARY, 82
MTVFND, 82
MTWEIG, 82
MULTIPOLE, 13, 106, 114
MVATTR, 19
MVBANK, 19
MVBIAS, 19
MVF1, 19
MVF2, 19
MVIND1, 19
MVIND2, 19
MVIND3, 19
MVSEEN, 19
MWFLT, 6, 7, 9
MWNAM, 9, 15
MXALS, 27, 80
MXCLS, 27, 80
MXDEF, 27, 60
MXDRP, 27, 45
MXF1, 17
MXF2, 17
MXKNW, 28, 47
MXLMP, 27, 47
MXMOD, 28, 47
MXOP, 17
MXORD, 27, 60
MXSIZ, 16
MXVAL, 17

MZ, 3

MZBOOK, 3, 9, 127, 129, 130
MZCOPY, 127, 131
MZDROP, 8, 127, 131, 132
MZEBRA, 127, 131

MZEND, 127, 132
MZFLAG, 127, 132
MZGARB, 8, 127, 132
MZLINK, 7, 8, 127, 132
MZNEED, 127, 133
MZPUSH, 127, 133
MZSTOR, 6, 7, 127, 134
MZVERS, 127, 134
MZWIPE, 7, 127, 134
MZWORK, 7, 8, 127, 134, 135

name

attribute, 15
bank, 22

NCAT, 15
NEWCOR, 37
NEWMAP, 37
next link, 4
NFAIL, 37
NKAT, 12

NOISE, 14, 113
NORMAL, 14, 53, 69

NPART, 31
NSUP, 36

NUMBER (%), 76

NWARN, 37
NWORK, 7
NXOPR, 58

NZBANK, 127, 135

NZERO, 131

object, 3

occurrence count bank, 22
OCTUPOLE, 13, 106, 114
operation code, 17
OPTICO, 32, 33

OPTIC1, 33

OPTICS, 14, 23, 116
OPTION, 14, 34, 35, 43

option, 34
orbit, 38

ORBIT(6), 33
ORBITO(6), 32
order bit, 27, 60
origin link, 4

ORTRAN, 123

157

158

output, 39

P4, 89
PA3DIF, 89
PA3INI, 89
PA6ADD, 89, 90
PA6BRK, 89, 90
PA6CLR, 89, 90
PA6CPY, 89, 91
PA6DIF, 89, 91
PAGINI, 89
PA6NRM, 89, 91
PA6PRD, 89, 91
PA6PRT, 89, 92
PA6SCL, 89, 92
PA6SUB, 89, 92
PA6SUM, 89, 93
PA6VAL, 89, 93
PA6XFM, 89, 93
PACKMEMORY, 14
PAINIT, 89

PARAMETER, 9, 13, 43, 101

PARNUM, 30

particle
charge, 30
energy, 30
mass, 30
momentum, 30
name, 30
number flag, 31
per bunch, 30
radius, 31

PAXIND, 89

PC, 30

PDAMP(3), 31

PHIX, 33

PHIXO, 33

PHIY, 33

PHIYO, 33

physical constants, 35

PHYSICPM, 35

PI, 36

PL, 94

PLAMDA, 35

PLARWE, 94

PLCOLI, 94

PLCURY, 94

PLDUMP, 94

PLELMA, 94

PLGACN, 94

PLGARW, 94

PLGAXN, 94
PLGCMD, 94
PLGETN, 94
PLGTBS, 94
PLINTP, 94, 95
PLMAIN, 94, 95
PLOT, 14, 94
plot, 37
PLPLOT, 94, 95
PLPREP, 94, 95
PLPTIT, 94
PLPVAL, 94
PLQCON, 94, 96
PLSCHM, 94
PMASS, 35
pointer bank, 22
Polish notation, 94
POOLDUMP, 14, 62
POOLLOAD, 14, 62
position, 22

flags, 118
postfix notation, 16
PR, 97
PRAD, 35
PRCGROUP, 13
precision, 9
PRINT, 14, 54
PRLINE, 97
process, 37

code, 13
program

action, 13

module, 13
PROMPT, 37
prompt, 37
PRPAGE, 97
PRTNAM, 30
punch, 39
PUTDISP, 49
PUTKICK, 14, 49
PUTORBIT, 14, 49

Q,3,4,6
QELECT, 35
QRFAC, 123
QRSOLV, 123
Qs, 38

QUADRUPOLE, 13, 106, 114

quadrupole table, 26
QX, 38
qQy, 38

INDEX

INDEX

R, 62, 64, 65
ROMAT(2,2), 33

radiation
flag, 30
loss, 31
RANF(), 17
RANGE, 36
range, 36

attribute, 18
reference bank, 18

RBAR, 39

RBEND, 13, 106
RCOLLIMATOR, 13

RD, 98
RDFAIL, 98
RDFIND, 98
RDFORM, 98
RDINIT, 98
RDINT, 98
RDLINE, 98
RDLOGC, 98
RDMARK, 98
RDNUMB, 98
RDSKIP, 98
RDSTAT, 98
RDSTRG, 98
RDTEST, 98
RDWARN, 98
RDWORD, 98
RE, 32
REAL, 7, 122

real attribute, 16
recursion bit, 27
REFER, 21-23, 29, 76, 118

reference, 3

link, 5, 8, 9

REFLECT, 80
relation, 5

relativistic, 30
REMOVE, 14, 80, 121
replacement list, 20

RESET, 35
RESPLOT, 94

RETRIEVE, 14, 62
RETURN, 14, 62

reverse link, 4, 5

revolution frequency, 30, 54
RFCAVITY, 13, 106, 114
RMAT(2,2), 34
RMATRIX, 14, 82

159

RNGNAM, 36
root bank, 10
RT, 32

RTP, 32

RUN, 14, 113
RXVAL, 58
RZ, 3

S, 62—65
SAVE, 14, 101, 121
SAVEBETA, 14, 54, 116
SAVESIGMA, 53
SBEND, 13, 106
SBITO, 22, 139
SBIT1, 22, 139
SBYT, 22, 139
SCAN, 37
scanning mode, 37
second default, 11, 44
second-order, 32
SELECT, 14, 54
self-defining, 9
SEQEDIT, 14, 37, 80
SEQFLAG, 22
SEQGROUP, 22
SEQUENCE, 13, 21, 23, 80, 101
sequence
flag bank, 29
index bank, 29
occurrence bank, 29
pointer bank, 29
split bank, 29
SET, 14, 43
SETPLOT, 14, 94
SEXTUPOLE, 13, 106, 114
sextupole table, 26
SHOW, 14, 101
SIGDX, 38
SIGDY, 38
SIGE, 30, 31
SIGT, 30, 31
SIGX, 31
SIGXCO, 38
SIGY, 31
SIGYCO, 38
SIMPLEX, 14, 82
SIN(X), 17
single precision, 9
SINMUX, 38
SINMUY, 38
SMALL, 7

160

SOLENOID, 13, 106, 114
SOLVER, 123
SORTZV, 139
source pointer, 29
SPLIT, 14, 54
split pointer, 29
SQRT(X), 17
SROT, 106, 114
SROTATION, 13
stability, 37
STABT, 37
STABX, 37
STABY, 37
START, 14, 113
STATIC, 14, 69
STATUS, 14, 36, 62
status

bits, 27

flags, 36

word, 5
STFLAG, 37
STOASC, 138
STOP, 14, 43
STORE, 13
store, 3
stream, 39
STRGROUP, 10
string attribute, 18
structural link, 4, 9
Su, 99
SUANGL, 99
subprocess code, 13
SUBROUTINE, 13, 43, 101
SUCOPY, 99
SUELEM, 99
SUHEAD, 99
SUIDEN, 99
SULINE, 99
SUMAIN, 99
SUML, 34
summary, 38
SUMMRY, 38
SUMTRX, 99
superperiods, 36
supporting link, 9
SURVEY, 14, 23, 99, 112
SUTRAK, 99
SUTRAN, 100
SUUSER, 100
SV, 101

SVATTR, 101
SVBANK, 101
SVBEGN, 101
SVCONT, 101
SVDICT, 101
SVDUMP, 101
SVEXPR, 101
SVHELP, 101
SVINT, 101
SVLINE, 101
SVLIST, 101
SVLITT, 101
SVMAIN, 101
SVNAME, 101
SVPARM, 101
SVREAL, 101
SVSEQ, 101
SVSHOW, 101
SVSTRG, 101
SVSUBR, 101
SVVREF, 101
SYMEIG, 123
SYMM, 36
symmetry, 36
SYMPL, 35
SYMSOL, 123
synchrotron

radiation flag, 30

tune, 38
SYSTEM, 14, 62

T, 63-65

TABLE, 102
TAN(X), 17
TAPE, 112

TB, 102

TBBUFF, 102
TBCHCK, 102
TBCLOS, 102, 103
TBCOL, 102, 103
TBCREA, 102, 103
TBDATA, 102
TBDROP, 102, 104
TBDUMP, 102
TBFILE, 102
TBFORM, 102
TBGDSC, 102, 104
TBGET, 102
TBINIT, 102
TBINPT, 102
TBLIST, 102

INDEX

INDEX

TBNAME, 102
TBOPEN, 102, 104
TBOUTP, 102
TBPDSC, 102, 104
TBPUT, 102

TBREAD, 102
TBRTFS, 102, 105
TBSBET, 116
TBSEG, 102, 103, 105
TBSET, 102, 103, 105
TBWRIT, 102
TBWTFS, 102, 105
TE, 32

TELL, 35

terminal, 39

TFFLOW, 113
TGAUSS(X), 17
TILT, 79

TIMEL, 139

TIMEX, 139
TITLE, 14

M, 106

TMALI1, 106
TMALI2, 106

TMARB, 106
TMATRIX, 14, 82
TMBB, 106

TMBEND, 106

TMCAT, 106, 107
TMCLOR, 106, 110
TMCORR, 106
TMDERI, 107

TMDRF, 106

TMFOC, 106

TMFRNG, 106
TMFRST, 23, 32, 106, 107
TMINV, 106, 108
TMMAP, 32, 106, 108
TMMKSM, 106, 108
TMMULT, 106

TMOCT, 106

TMQUAD, 106
TMREFE, 23, 32, 106, 108
TMREFL, 106, 109
TMRF, 106
TMSCND, 23, 32, 106, 109
TMSECT, 106

TMSEP, 106

TMSEXT, 106

TMSOL, 106

TMSROT, 106

TMSYMM, 106, 109
TMSYMP, 106, 109

TMTILT, 109

TMTRAK, 106, 110
TMTURN, 24, 106, 110
TMUSER, 106, 111

TMYROT, 106
TP, 112
TPELEM, 112
TPHEAD, 112
TR, 113
TRACE, 35

TRACK, 14, 23, 37, 113, 114
TRACK (*,7), 76

transfer
maps, 37

matrix, 32
transition energy, 39

TRANSPORT map, 32

TRBEGN, 113
TRCLOS, 113
TRDSP1, 113
TRDSP2, 113
tree, 4, 10

TREND, 113

TREXEC, 113
TRFILE, 113
TRHEAD, 113
TRKILL, 113
TRMAIN, 113
TRNOIS, 113
TRNRES, 113
TRNSET, 113
TRPELM, 113
TRPTRN, 113
TRRUN, 113

TRSAVE, 113
TRSTRT, 113
TRTBLE, 113
TRTURN, 113
TSAVE, 113

TT, 32, 114
TTBB, 114

TTCORR, 114
TTDRF, 114
TTELENM, 114
TTMULT, 114
TTOCT, 114
TTQUAD, 114

161

162

TTRF, 114
TTSEXT, 114
TTSOL, 114
TTSROT, 114
TTTRAK, 114, 115
TTUSER, 114, 115
TTYROT, 114
tune, 38
TW, 116
TWBTGO, 116
TWBTIN, 116
TWBTPR, 116
TWBTSV, 116
TWBTTK, 116
TWBTTP, 116
TWCHGO, 116
TWCHPR, 116
TWCHTP, 116
TWCLOG, 116
TWCPGO, 116
TWCPIN, 116
TWCPPR, 116
TWCPTK, 116
TWDISP, 116
TWFILL, 116
TWIBS, 116
TWISS, 14, 22, 23,112, 116
TWISS1, 53
TWMAIN, 116
TWOPGO, 116
TWOPSV, 116
TWOPTC, 116
TWSINT, 116
TWSMSV, 116
TWSUMM, 116
TYPE, 54, 56

U, 62, 64, 65
Uo, 31

UCOPY, 7, 139
UCTOH, 7, 139
UHTOC, 7, 139

up link, 4

URGFLT, 119

USE, 14, 22, 36, 54, 80, 117
USERO, 123

USEROQ), 17

USER1, 123

USER1(X), 17

USER2, 123
USER2(X,Y), 17

USERCM, 123
USERDF, 123

UT, 117
UTBEAM, 36, 76, 114, 117
UTCLRC, 117, 118
UTDASH, 117
UTELEM, 76, 114, 117, 118
UTGFLT, 16, 117, 119
UTGINT, 117, 119
UTGLOG, 117, 119
UTGNAM, 117, 119
UTGPOS, 117, 120
UTGRNG, 117, 120
UTGSTR, 117, 120
UTGTYP, 117, 120
UTLENG, 117, 120
UTLOOK, 121
UTMTCH, 117
UTMTPT, 117
UTOCNM, 117, 121
UTPATT, 117, 121
UTPFLT, 117, 122
UTPINT, 117, 122
UTPLOG, 117, 122
UTPNAM, 117, 122
UZERO, 139

VALUE, 14, 43
VARGROUP, 19
variable
pointer, 29
reference
bank, 19
table, 59
reference bank, 16, 17
variable reference, 19
variable reference bank, 17
VARY, 14, 82
VBLANK, 139
VDOT, 123
VERIFY, 35
vertical
beam size, 38
chromaticity, 38
dispersion, 38
emittance, 30
orbit, 38
tune, 38
VFILL, 139
VKICK, 106, 114
VKICKER, 13

INDEX

INDEX 163

VMOD, 123
VMONITOR, 13
VZERO, 139

W, 62, 64, 65
WARN, 35
warning, 37
WEIGHT, 14, 82
working space, 7
WSTACK, 7

WX, 33

WXO0, 33

Wy, 33

WYO, 33

XCOMAX, 38
XIX, 38
XIY, 38

YCOMAX, 38
YROT, 106, 114
YROTATION, 13

ZABEND, 123
ZEBRA, 3

data type, 9
ZEND, 123
ZFATAL, 127, 135
ZFATAM, 127, 135
ZPHASE, 127, 136
ZSHUNT, 127, 136
ZTELUS, 123
ZTOPSY, 127, 136
ZUNIT, 39

