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Chapter 1. Conventions

1.1 Reference System

The accelerator and/or beam line to be studied is described as a sequence of beam elements placed
sequentially along a reference orbit. The reference orbit is the path of a charged particle having
the central design momentum of the accelerator through idealised magnets with no fringe fields (see
Figure 1.1).

The reference orbit consists of a series of straight line segments and circular arcs. It is defined under
the assumption that all elements are perfectly aligned. The accompanying tripod of the reference orbit
spans a local curvilinear right handed coordinate system (,y, s). The local s-axis is the tangent to
the reference orbit. The two other axes are perpendicular to the reference orbit and are labelled z (in
the bend plane) and y (perpendicular to the bend plane).

1.2 Closed Orbit

Due to various errors like misalignment errors, field errors, fringe fields etc., the closed orbit does
not coincide with the reference orbit. It also changes with the momentum error. The closed orbit is
described with respect to the reference orbit, using the local reference system (z,y, s). It is evaluated
including any nonlinear effects.

MAD also computes the betatron and synchrotron oscillations with respect to the closed orbit.
Results are given in the local (2, y, s)-system defined by the reference orbit.

1.3 Global Reference System

The reference orbit of the accelerator is uniquely defined by the sequence of physical elements. The lo-
cal reference system (z, y, s) may thus be referred to a global Cartesian coordinate system (X,Y, Z) (see
Figure 1.2). The positions between beam elements are numbered 0,...,%,...,n. The local reference
system (z;, ¥, z;) at position ¢, i.e. the displacement and direction of the reference orbit with respect
to the system (X, Y, Z) are defined by three displacements (X;,Y;, Z;) and three angles (6;, ¢;,v;) The
above quantities are defined more precisely as follows:

X Displacement of the local origin in X -direction.
Y Displacement of the local origin in Y -direction.
Z Displacement of the local origin in Z-direction.
L THETA] Angle of rotation (azimuth) about the global Y-axis, between the global Z-

axis and the projection of the reference orbit onto the (Z, X')-plane. A positive angle ¢
forms a right-hand screw with the Y -axis.

L PHI] Elevation angle, i.e. the angle between the reference orbit and its projection onto
the (Z, X )-plane. A positive angle ¢ correspond to increasing Y. If only horizontal
bends are present, the reference orbit remains in the (Z, X )-plane. In this case ¢ is
always zero.

L PSI] Roll angle about the local s-axis, i.e. the angle between the intersection of the
(z,y) and (Z, X )-planes and the local z-axis. A positive angle ¢ forms a right-hand
screw with the s-axis.



The angles (6, ¢,v) are not the Euler angles. The reference orbit starts at the origin and points
by default in the direction of the positive Z-axis. = The initial local axes (z,y, s) coincide with the
global axes (X,Y, Z) in this order. The six quantities (X, Yy, Zo, 6o, ¢o, %0) thus all have zero initial
values by default. The program user may however specify different initial conditions.

Internally the displacement is described by a vector V, and the orientation by a unitary matrix
W. The column vectors of W are the unit vectors spanning the local coordinate axes in the order
(z,y,s). V and W have the values

X
7Z
where
cosf 0 sinf 1 0 0 cosyp —siny 0
0= 0 1 0 , =10 cos¢ sing |, ¥ =] siny cosv 0
—sinf 0 cosf 0 —sin¢ cos¢ 0 0 1

The reference orbit should be closed and it should not be twisted. This means that the displacement
of the local reference system must be periodic with the revolution frequency of the accelerator, while
the position angles must be periodic (modulo 27) with the revolution frequency. If ¢ is not peri-
odic (modulo 27), coupling effects are introduced. When advancing through a beam element, MAD
computes V; and W; by the recurrence relations

Vi=W,_1R, +V,_,4, W, = W,_15;

The vector R; is the displacement and the matrix .5; is the rotation of the local reference system at
the exit of the element ¢ with respect to the entrance of the same element. The values of R and § are
listed below for each physical element type.

1.3.1 Straight Elements

In straight elements the local reference system is simply translated along the local s-axis by the length
of the element. This is true for

e Drift spaces,

¢ Quadrupoles,

e Sextupoles,

e Octupoles,

e Solenoids,

¢ RF cavities,

e Electrostatic separators,
e Closed orbit correctors,

¢ Beam monitors.



The corresponding R and § are

100
R=|0o], sS=]o010
L 001

A rotation of the element about the s-axis has no effect on R and 5, since the rotations of the reference
system before and after the element cancel.

1.3.2 Bending Magnets

Bending magnets have a curved reference orbit. For both rectangular and sector bending magnets

p(cosa — 1) cosa 0 —sina
R-= 0 ., S§=| 0o 1 o |,
psina sina 0 cosa

where a is the bend angle. A positive bend angle represents a bend to the right, i.e. towards negative
¢ values. For sector bending magnets, the bend radius is given by p = L/a, and for rectangular
bending magnets it has the value p = L/(2sin(«/2)). If the magnet is rotated about the s-axis by an
angle ¢, R and § are transformed by

R =TR, §S=T8T!

where T is the rotation matrix

cosy —sinty 0
T=| sinyy cosy 0
0 0 1

The special value ¢ = 7 /2 represents a bend down.

1.3.3 Rotation of the Reference System

For a rotation of the reference system by an angle v about the beam (s) axis:

costy —siny 0
S =1 sinyy cosyp 0],
0 0 1

while for a rotation of the reference system by an angle 6 about the vertical (y) axis:

cosf 0 —siné
S = 0 1 0

sind@ 0 cosf@

In both cases the displacement R is zero.

1.3.4 Elements which do not Change the Local Reference

MARKER elements do not affect the reference orbit. They are ignored for geometry calculations.



1.4 Sign Conventions for Magnetic Fields

The MAD program uses the following Taylor expansion [5] for the field on the mid-plane (y = 0):

=. B,z"
By(z,0) =) -
n=0 °

Note the factorial in the denominator. The field coefficients have the following meaning:

By Dipole field, with a positive value in the positive y direction; a positive field bends a
positively charged particle to the right.

B, Quadrupole coefficient B; = 0B, /0z; a positive value corresponds to horizontal fo-
cussing of a positively charged particle.

B, Sextupole coefficient B, = 9B, /0z>.
B; Octupole coefficient B; = 9B, /0z°.

Using this expansion and the curvature h of the reference orbit, the longitudinal component of the
vector potential to order 4 is:

ha? 1 h h?
A, = + By e — —— B, [ (22 — y?) — Z2® + —(42* — y* >
+ o<a: 2(1+hm)> + 1<2(fv y*) % +24(w y*) +

1 h 1
+ B, <E(Jz3—3azy2)— ﬂ(az‘l—y‘l)—l—...) + Bj <ﬂ(az4—6m2y2—|—y4)—|—...> + ...

Taking curlA, in curvilinear coordinates the field components can be computed as

%
B,(z,y)= + B <y—|— Fgf’—l—...)

h® 1
—|—B2<J:y—€y3—|—...> —|—B3<E(3az2y—y3)—|—...>—|—...

h , K
B,(z,y)= + Bo + B az—gy —|—7:1:y + ...

1 h 1
+ B, <§(m2—y2)—§my2—|—...> + Bj <E(az3—3a}y2)—|—...>—|—...

It can be easily verified that curl B and divB are both zero to the order of the B; term. Introducing
the magnetic rigidity Bp, the multipole coefficients are computed as K,, = eB,,/po = B, /Bp.

1.5 Variables Used in MAD

For each variable the physical units are listed in square brackets.

1.5.1 Canonical Variables Describing Orbits
MAD uses the following canonical variables to describe the motion of particles:
X Horizontal position # of the (closed) orbit, referred to the ideal orbit [m)].

PX Horizontal canonical momentum p, of the (closed) orbit referred to the ideal orbit,
divided by the reference momentum: PX = p,/po, [1].

Y Vertical position y of the (closed) orbit, referred to the ideal orbit [m].



PY

PT

DELTAP

Vertical canonical momentum p, of the (closed) orbit referred to the ideal orbit, divided
by the reference momentum: PY = p, /po, [1].

Velocity of light times the negative time difference with respect to the reference particle:
T = —cAt, [m]. A positive T means that the particle arrives ahead of the reference
particle.

Energy error, divided by the reference momentum times the velocity of light: PT =
§ = AE/poc, [1]. This value is only non-zero when synchrotron motion is present. It
describes the deviation of the particle from the orbit of a particle with the momentum
error DELTAP.

Difference of the reference momentum and the design momentum, divided by the ref-
erence momentum: DELTAP = §, = Ap,/po, [1]. This quantity is used to normalize all
element strengths. See Chapter 15.1.1 for explanation.

The independent variable is:

Arc length along the reference orbit, [m].

In the limit of fully relativistic particles (v = ¢, E = pc), the variables T, PT used here agree with
s, 6 used in TRANSPORT [6]. This means that T becomes the negative path length difference, while
PT becomes the fractional momentum error. The reference momentum p, must be constant in order

to keep the system canonical.

1.5.2 Normalised Variables and other Derived Quantities

XN

PXN

WX

PHIX

YN

PYN

WY

PHITY

TN

PTN

WT

PHIT

The normalised horizontal displacement z, = RETSZ [m~1/2].

The normalised horizontal transverse momentum p,, = SEFSZ [m~1/2.
The horizontal Courant-Snyder invariant W, = 22 + p2  [m™!].

The horizontal phase ¢, = — arctan(py,/2,)/27 [1].

The normalised vertical displacement y, = RETSZ [m~'/2].

The normalised vertical transverse momentum py,, = SE,175Z [m~'/2].
The vertical Courant-Snyder invariant W, = y2 + p2, [m™'].

The vertical phase ¢, = — arctan(p,,/y.)/2x.

The normalised vertical displacement t, = RETSZ [m~1/2].

The normalised vertical transverse momentum p;, = SEfSZ [m~1/2].
The longitudinal invariant W, = ¢2 + p?, [m™'].

The vertical phase ¢, = — arctan(ps,/t,)/27 [1].

in the above formulas Z is the phase space vector

z



the matrix S is the “symplectic unit matrix”

o o o

-1

oo oo o=
oo o OO
o oo oo
o, O O oo

0 -1

and the vectors E; are the three complex eigenvectors.

1.5.3 Linear Lattice Functions (Optical Functions)

Several MAD commands refer to linear lattice functions. Since MAD uses the canonical momenta
Dz, Dy instead of the slopes z/,y’, their definitions differ slightly from those in Reference [10]. The
linear lattice functions are known to MAD under the following names:

BETX Amplitude function S3,, [m].

ALFX Correlation function a, = —(1/2)(88,/0s), [1].
MUX Phase function y,, [27].

DX Dispersion of z, i.e. D, = 0z/06, [m].

DPX Dispersion of p, /po, i.e. D,, = (1/po)(0p,/006), [1].
BETY Amplitude function 8,, [m].

ALFY Correlation function o, = —(1/2)(08,/0s), [1].
MUY Phase function p,, [27].

DY Dispersion of y, i.e. D, = 0y/06, [m].

DPY Dispersion of py/po, i.e. D, = (1/po)(0p,/86), [1].

1.5.4 Chromatic Functions

Several MAD commands refer to the chromatic functions. Since MAD uses the canonical momenta
Dz, Dy instead of the slopes z’,y’, their definitions differ slightly from those in Reference [24]. The
chromatic functions are known to MAD under the following names:

WX Chromatic amplitude function W, = /a2 + b2, [1], where

*T B, ds’ T ds B, db -

PHIX Chromatic phase function ®, = arctan(a,/b,), [27].
DMUX Chromatic derivative of phase function du,/dé, [27].
DDX Chromatic derivative of dispersion dD,/dé = d*z/dé?, [m].

DDPX Chromatic derivative of dispersion dD,_/dé = (1/po)(d*p,/db?), [1].



WY

PHITY

DMUY

DDY

DDPY

Chromatic amplitude function W, =, /a2 + b2, [1], where

1 dg, B day, oy df,

vT e, ds’ T ds B, ds
Chromatic phase function &, = arctan(a,/b,), [27].
Chromatic derivative of phase function du,/dé, [2].

Chromatic derivative of dispersion dD,/d§ = d*z/d6?, [m)].

Chromatic derivative of dispersion dD,, /dé = (1/po)(dp,/dé?), [1].

1.5.5 Variables in the TUNES Tables

The TUNES option of the TWISS command produces a table which contains the following variables:

DELTAP

ALFA
GAMMATR
QX

QY
XIX
XTIy
XRMS
YRMS
XMAX
YMAX
BXMAX
BYMAX
DXMAX

DYMAX

Energy difference, divided by the reference momentum times the velocity of light:
DELTAP = 6, = AE/poc, [1].

Ac/C [1].

The momentum compaction o = ==

The transition energy 7;, = FE¢,/moc? [1].

The horizontal tune [1].

The vertical tune [1].

The horizontal chromaticity 0Q, /08 [1].

The vertical chromaticity 0Q, /06 [1].

The horizontal r.m.s. closed orbit deviation [m].

The vertical r.m.s. closed orbit deviation [m)].

The absolute maximum of horizontal closed orbit deviation [m)].
The absolute maximum of vertical closed orbit deviation [m].
The largest horizontal 3, [m].

The largest vertical 3, [m].

The absolutely largest horizontal dispersion [m)].

The absolutely largest vertical dispersion [m)].

1.5.6 Variables in the TRACK Table

The command RUN writes tables with the following variables:

X

PX

Horizontal position z of the orbit, referred to the ideal orbit [m].

Horizontal canonical momentum p, of the orbit referred to the ideal orbit, divided by
the reference momentum: PX = p, /po, [1].

Vertical position y of the orbit, referred to the ideal orbit [m)].



PY Vertical canonical momentum p, of the orbit referred to the ideal orbit, divided by the
reference momentum: PY = p, /po, [1].

T Velocity of light times the negative time difference with respect to the reference particle:
T = —cAt, [m]. A positive T means that the particle arrives ahead of the reference
particle.

DELTAP Energy difference, divided by the reference momentum times the velocity of light:

DELTAP = § = Ap/p,c, [1].

1.6 Physical Units Used

Throughout the computations MAD uses international (SI, Systéme International) units. These units
are summarised in Table 1.6.

Table 1.1: Physical Units used by MAD

Quantity Unit

Length m (metres)
Angle rad (radians)
Quadrupole coefficient m~2
Multipole coeflicient, 2n poles | m™
Electric voltage MV (Megavolts)
Electric field strength MV /m
Frequency MHz (Megahertz)
Phase angles multiples of 27
Particle energy GeV
Particle mass GeV/c?
Particle momentum GeV/c
Beam current A (Ampeéres)
Particle charge e (elementary charges)
Impedances MQ (Megohms)
Emittances Tm
RF power MW (Megawatts)
Higher mode loss factor V/pc

1.7 Wild Card Patterns

Some commands allow selection of items via “wild-card” strings. Such a pattern string must be
enclosed in single or double quotes; and the case of letters is significant. The meaning of special
characters is similar to the UNIX grep utility:

Stands for an arbitrary character,

Leieacs...] Stands for one character belonging to the string contained in brackets (example: [abc]
means one of a, b, c).

[c; — cac3 — cq...] Stands for ranges of characters (example: [a-zA-Z] means any letter).

* Allows zero or more repetitions of the preceding item (example: [A-Z]* means zero or
more upper-case letters).



\e1 Removes the special meaning of character ¢;.
All other characters stand for themselves. Examples:

REMOVE,PATTERN="D. ."
SAVE ,PATTERN="K.*QD.*\.R1"

The first command removes all elements whose names have exactly three characters and begin with
the letter D. The second command saves definitions beginning with the letter X, containing the string
QD, and ending with the string .R1. The two occurrences of .* each stand for an arbitrary number
(including zero) of any character, and the occurrence \. stands for a literal period.

1.8 Save Sequence as a Line, SAVELINE Command

A representation of the range set in the latest USE can be saved as an equivalent LINE definition using
the command

SAVELINE,NAME=1line-name,FILENAME=filename

where
NAME is the name to be given on the generated LINE definition,
FILENAME is the name of the file to be written.

The currently active range of the latest USE command will be written together with all parameter and
element definitions. The output may contain a lot of irrelevant information, as no attempt is made to
output only the definitions needed to regenerate an equivalent machine.
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Chapter 2. Commands and Statements

Table 2.1: Utility Commands

Name | Meaning Section
HELP Help on command names 2.2.1
SHOW Help on defined names 2.2.2
TITLE | Define page header for output 2.5
STOP End program run 2.6
OPTION | Set command options 2.7

= Define parameter dependencies 2.8.1
SET Set parameter value 2.8.2
VALUE | Show parameter values 2.8.3
SYSTEM | Execute operating system command 2.9

Input for MAD is free format. Blank characters or blank input lines do not affect program execution.
Input lines are normally printed on the ECHO file as soon as they are read, but this feature can be
turned off for long input files. In the following descriptions, words in lower case stand for syntactic
units which are to be replaced by actual text. UPPER CASE is used for keywords or names. These
must be entered as shown. Items enclosed in braces ({...}) may be repeated any number of times,
including zero times. A vertical bar (|) represents an alternative.

2.1 Statements, Attributes, Options, Comments

The input file consists of a sequence of commands, also known as statements. Normally a statement
occupies a single input line. Several statements may be placed on the same line, if they are separated
by semicolons (;). A longer statement can be continued on several input lines. All but the last
line of the statement are then terminated by an ampersand (&). Blank input lines, or input lines
beginning with an exclamation mark are accepted as comment lines. When an ampersand (&) or an
exclamation mark (!) is found on an input line, the remaining characters of the line are skipped,
After an ampersand (&) MAD expects continuation of the statement on the next input line, while an
exclamation mark (!) terminates the statement. An input line cannot be longer than 80 characters;
the length of one command is limited at 4000 non-blank characters.
The general format for a command is

label: keyword {,attribute}

It has three parts:

label Gives a name to the stored command. A label is required for a definition statement.
keyword Identifies the action desired.

attribute  Most commands require attributes for their operation. These are normally entered in
the form

attribute-name=attribute-value

The attribute-name selects the attribute, and attribute-value gives it a value.

11



The format of 1abel and keyword is described in Section 2.3.

In many cases the input can be abbreviated by omitting attribute-name and the equals sign.
The attribute-values must then be entered in the order in which attributes appear in the command
dictionary. For some attributes it is sufficient to enter the name only. The attribute is then given a
default value taken from the command dictionary. Example: TILT attribute for various magnets.

Whenever this makes sense, an attribute can be left out altogether. To avoid overloading the
syntax descriptions, this usage is not indicated.

The command dictionary also defines one of the following types for each command attributes:

o Name attribute (see Section 2.4.1),

e String attribute (see Section 2.4.2),

¢ Logical attribute (see Section 2.4.3),

o Integer attribute (see Section 2.4.4),

o Real expression (see Section 2.4.5),

o Deferred expression (see Section 2.4.8),
¢ Constraint (see Section 2.4.9),

¢ Variable name (see Section 2.4.10),

¢ Line definition (see Section 4.5),

¢ Range selection (see Section 4.7),

When a command is entered with a 1abel, MAD keeps it in memory. This allows repeated execution
of the same command by just entering its label. If the label of such a command appears together with
new attributes, the attributes will be replaced first:

QF: QUADRUPOLE,L=1,K1=0.01 ! first definition of QF
QF,L=2 ! redefinition of QF, new length
TW1l: TWISS,BETX=1,BETY=1 ! first execution of TWi1

! with BETX=1, BETY=1
TW1,BETX=2,BETY=3 ! second execution of TWi1

! with BETX=2, BETY=3

2.2 Getting Help

2.2.1 HELP Command

A user who is uncertain about the attributes of a command should try the HELP command

HELP,keyword

The program then prints the list of attributes for the command keyword with their type and, if they
exist, their defaults and limits. HELP entered alone lists all available commands. Examples:

HELP ! List all valid keywords
HELP,TWISS ! List attributes of "TWISS"



2.2.2 SHOW Command

The SHOW statement displays the current values of a command, element, line, or parameter.

SHOW ,name

It displays the named command or definition on the ECHO file in the same format as the original input
statement used to create the item viewed. SHOW entered alone lists all known definitions. Examples:

SHOW ! Show all defined names
SHOW,QD ! Show definition of QD

2.3 Identifiers or Labels

A label begins with a letter, followed by up to fifteen letters, digits, decimal points (.), primes (),
or underscores (_). Characters beyond the sixteenth are dropped, and the resulting sequence must be
unique. Other special characters are allowed, if they are enclosed in single or double quotes. It makes
no difference which type of quotes is used, as long as the same are used at both ends. The preferred
form is double quotes.

A label may refer to a keyword, an element, a beam-line, a parameter, etc. Once it is defined, a
reference can be abbreviated by dropping trailing characters, as long as the abbreviation fits only one
defined label. Note that abbreviations may introduce ambiguities which cannot always be resolved
correctly by MAD.

MAD maintains two name spaces, one for keywords, and one for user-defined names. Thus no
conflict arises if a user-defined name is the same as a predefined keyword.

2.4 Command Attributes

2.4.1 Name Attributes

A name attribute often selects one of a set of options:
RUN,METHOD=TRANSPORT ! track by the "TRANSPORT" method

It may also refer to a user-defined object:

ARCHIVE,TABLE=TWISS ! archive the table "TWISS"

2.4.2 String Attributes

A string attribute makes alphanumeric information available, e.g. a title or a file name. Examples:

TITLE,"This is a title for the program run'"
POOLDUMP,FILENAME="pool.dump.file"

2.4.3 Logical Attributes

Many commands in MAD require the setting of logical values (flags) to represent the on/off state of
an option. A logical value flag can be set in several ways:

flag | flag=.YES. | flag=.TRUE. | flag=.T. | flag=.0N.

It can be reset by any of the following:



-flag | flag=.NO. | flag=.FALSE. | flag=.F. | flag=.0FF.

Example:
USE,...,SYMM ! the beam line is symmetric

The default for a logical flag is always .FALSE..

2.4.4 Integer Attributes

An integer attribute usually denotes a count. Example:

USE, ...,SUPER=4 ! there are four superperiods

2.4.5 Real Expressions

To facilitate the definition of interdependent quantities, any real value can be entered as an arithmetic
expression. When a value used in an expression is redefined by the user or changed in a matching
process, the expression is reevaluated. Expression definitions may be entered in any order. MAD
evaluates them in the correct order before it performs any computation. At evaluation time all
operands used must have values assigned.

2.4.6 Operators in Arithmetic Expressions

An expression can be formed using the following operators:

o Arithmetic operators:

+ Addition,

- Subtraction,

* Multiplication,
/ Division,

- Exponentiation.

o Ordinary functions:

SQRT(X) Square root,

LOG(X) Logarithm,

EXP(X) Exponential,

SIN(X) Trigonometric sine,
C0s(X) Trigonometric cosine,
TAN(X) Trigonometric tangent,
ASIN(X) Arc sine,

ABS(X) Absolute value,
MAX(X,Y) Maximum of two values,
MIN(X,Y) Minimum of two values.

e Random number generators:

RANF() Random number, uniformly distributed in [0,1],

GAUSS() Random number, Gaussian distribution with unit standard deviation,



TGAUSS (X) Random number, Gaussian distribution with unit standard deviation, truncated
at X standard deviations,

USERO() Random number, user-defined distribution without arguments,
USER1(X) Random number, user-defined distribution with one argument,

USER2(X,Y) Random number, user-defined distribution with two arguments.

Parentheses indicate operator precedence if required. Constant sub-expressions are evaluated imme-
diately, and the result is stored as a constant. Exponentiation is not directly available. However, it
may be performed by the identity A® = exp(B *log(4)).

In an ordinary expression a random generator is only permitted if it has no variable arguments.
A random number is then generated at definition time and stored as a constant. Example:

D:DRIFT,L=0.01%RANF() ! a drift space with random length,
! generated at definition time.
E:DRIFT,L=USER1(X) ! not permitted, if X is a variable

2.4.7 Operands in Arithmetic Expressions

An expression may contain the following operands:

e Literal constants: Numerical values are entered like FORTRAN constants. Real values are
accepted in INTEGER or REAL format. The use of a decimal exponent, marked by the letter
D or E, is permitted. Examples:

1, 10.35, 5E3, 314.1592E-2

o Symbolic constants: MAD recognises the mathematical and physical constants listed in Ta-
ble 2.2. Their names should not be used for user-defined labels.

Additional symbolic constants may be defined to simplify their repeated use in statements and
expressions. The CONSTANT command

label: CONSTANT=constant-expression

defines a constant with the name label. Label must be unique. An existing symbolic constant
can be redefined, but it cannot change in a matching procedure. A reference to a constant is
immediately replaced by its value. Thus redefinition of a constant does not affect any preceding
definitions. Example:

IN: CONSTANT=0.0254

Table 2.2: Symbolic Constants

symbol | name Value used 0 unit
i PI 3.1415926535898 | 1
27 TWOPI 6.2831853071796 | 1

180/7 | DEGRAD | 57.295779513082 | °/rad
7/180 | RADDEG | 0.017453292519943 | rad/°

e E 2.7182818284590 | 1
m, EMASS 0.51099906*102 | GeV
m, PMASS 0.93827231 GeV

¢ CLIGHT | 2.99792458*10° | m/s




o Parameter labels: Often a set of numerical values depends on a common variable parameter.
Such a parameter must be defined according to Section 2.8.1. When its name is used in an
expression, MAD uses the current value of the parameter. Example:

X:=1.0
D1: DRIFT,L=X
D2: DRIFT,L=2.0-X

When the value of X is changed, the lengths of the drift spaces are recalculated as X and 2-X
respectively.

o FElement or command attributes: In arithmetic expressions the attributes of physical elements
or commands can occur as operands. They are named respectively by

element-name[attribute-name]
command-name[attribute-name]

Values are assigned to attributes in element definitions or commands. Example:

D1: DRIFT,L=1.0
D2: DRIFT,L=2.0-D1[L]

D1[L] refers to the length L of the drift space D1.

2.4.8 Deferred Expressions and Random Values

The definition of random machine imperfections requires evaluation of expressions containing random
functions. These are not evaluated like other expressions before a command begins execution, but
sampled as required from the distributions indicated when errors are generated. Such an expression is
known as a deferred expression. Its value cannot occur as an operand in another expression. Example:

ERROR: EALIGN,range,DX=SIGMA*GAUSS()

All elements in range are assigned independent random displacements sampled from a Gaussian
distribution with standard deviation SIGMA. The quantity ERROR[DX] must not occur as an operand
in another expression.

2.4.9 Constraints

In matching it is desired to specify equality constraints, as well as lower and upper limits for a quantity.
MAD accepts the following forms of constraints:

name=expression ! equality constraint

name<expression ! upper limit

name>expression ! lower limit

name<expression,name>expression ! both upper and lower limit
! for the same name

2.4.10 Variable Names

A variable name can have one of the formats:



parameter-name
command-name[attribute-name]
element-name[attribute-name]

The first format refers to the value of the global parameter parameter-name (see Section 2.8.1),
the second format refers to the attribute attribute-name of the command command-name or element
element-name respectively.

2.5 TITLE Statement

The TITLE statement

TITLE,S=page-header

expects a string page-header, enclosed in single or double quotes, which will be used as a title for
subsequent output pages. Before a TITLE statement is encountered, the page header is blank. It can
be redefined at any time.

2.6 STOP Statement

The STOP statement

STOP

terminates execution of the program. Any statement following the STOP statement is ignored.

2.7 OPTION Statement

The OPTIONS command (former SETOPTS statement) controls global command execution:

OPTION, RESET,INTER,ECHO,TRACE,DOUBLE,VERIFY,WARN,DEBUG,&
INFO,SYMPL,&
KEYWORD=integer,COMMAND=integer ,DEFINE=integer,&
EXPRESS=integer ,LINE=integer,TELL

The first seven logical flags activate or deactivate execution options:
RESET If true, all options are reset to their default values listed below before setting.

INTER Normally MAD determines itself whether it runs interactively. On some computer
systems this may not be possible; the user may then set this flag manually.

ECHO Controls printing of an echo of input lines on the file ECHO.

TRACE When the TRACE option is on, MAD writes additional information on the ECHO file
for each executable command. This information includes the command name, elapsed
CPU time before and after the command, and the CPU time used for the command.

DOUBLE When a table is created and the DOUBLE option is on, the table will be built in double
precision. Otherwise the table will be built in single precision. This option has no effect
in the single-precision version of MAD.

VERIFY If this option is on, MAD gives a message for each undefined variable.



WARN If this option is turned off, MAD suppresses all warning messages.

INFO If this option is turned off, MAD suppresses all information messages.
SYMPL If this option is turned off, MAD suppresses matrix symplectification.
DEBUG This option is reserved for the programmer.

The next five integer flags control debugging output. Each of them can have four different values:

0 No output.

1 Output in ”comprehensive” format.

2 Output by the ZEBRA dump routines.
3 Output in both formats.

The relevant output flags are:

KEYWORD Dump every new keyword definition.

COMMAND Dump every executable command before execution.

DEFINE Dump every new element or parameter definition.

EXPRESS Dump arithmetic expressions when they are decoded or evaluated.
LINE Dump every each new line definition.

One attribute controls the closed orbit finder:
COFACT The former parameter COFACT is now ignored.
The last attribute requests listing of the current settings:
TELL If true, the current settings are listed.
Example:

OPTION,-ECHO,TELL

Turns off the command echo print-out and lists the current settings. If contradicting options are
entered, the last option given prevails. Example:

OPTION,ECHO,-ECHO

turns off the ECHO option. The default settings at program start-up time are listed in Table 2.3.

Table 2.3: Initial Defaults for command options

option setting || option setting || option | setting || option setting
INTER on ECHO on TRACE off DOUBLE off
KEYWORD | 0 COMMAND | 0 DEFINE | 0 EXPRESS | 0
LINE 0




2.8 Parameter Statements

2.8.1 Relations between Variable Parameters

A relation is established between variables by the statement

parameter-name:=expression

It creates a new parameter parameter-name and discards any old parameter with the same name.
Its value depends on all quantities occurring in expression on the right-hand side. Whenever an
operand in expression changes, a new value is calculated. The definition may be thought of as a
mathematical equation; but MAD is not able to solve the equation for a quantity on the right-hand
side. Example:

GEV:=100
BEAM,ENERGY=GEV

Circular definitions are not allowed (but see Section 2.8.2):

X:=X+1 ! X cannot be equal to X+1
A:=B
B:=A ! A and B are equal, but of unknown value

2.8.2 Assignment to Parameters

A value is assigned to a parameter by the SET statement

SET,VARIABLE=parameter-name, VALUE=expression

This statement acts like a FORTRAN assignment. If the parameter parameter-name does not yet
exist, it is created. Then the expression is evaluated, and the result is assigned to the parameter
parameter-name. Finally the expression is discarded. Therefore a sequence like the following is

permitted:
. ! some definitions
USE,line
X:=0 ! create parameter X with value zero
! could also use "SET,X,0"
DO,TIMES=10 ! repeat ten times
TWISS ! uses X=0, 0.01, ..., 0.10
SET,X,X+.01 ! increment parameter X by 0.01
ENDDO

2.8.3 Output of Parameters

The VALUE statement

VALUE,VALUE=expression{,expression}

evaluates up to five expressions using the most recent values of any operands and prints the results
on the ECHO file. Example:

P1:=5
P2:=7
VALUE,P1xP2-3



After echoing the command, this prints:
AAVALU. Value of expression "P1*P2-3" is 32.00000000

The main use of this commands is for printing a quantity which depends on matched attributes. It
allows use of MAD as a programmable calculator. One may also tabulate functions.

2.9 SYSTEM: Execute Operating System Command

During an interactive MAD session the command SYSTEM allows to execute operating system com-

mands. After execution of the system command, successful or not, control returns to MAD. At present
this command is only available under UNIX or VM/CMS. Its format is:

SYSTEM, "string"

where string is a valid operating system command.

2.9.1 SYSTEM Command under UNIX

Most UNIX commands can be issued directly. Example:
SYSTEM,"1s -1"

causes a listing of the current directory in long form on the terminal.

2.9.2 SYSTEM Command under VM /CMS

If the system command refers to an EXEC file the string must begin with the word EXEC. Synonyms
or abbreviations are not always accepted. It is recommended to use standard CMS command names
and to spell them out in full. Examples:

SYSTEM, "ERASE TESTDATA MAD A"
SYSTEM,"EXEC FILELIST * * D"
SYSTEM,"XEDIT TESTDATA MAD A"



2.10 COMMENT/ENDCOMMENT Statements

Commands bracketed between COMMENT and ENDCOMMENT are not executed, but skipped. These com-
mands may be nested. Example:

EMIT ! executed

COMMENT

SURVEY ! not executed (nesting level 1)
COMMENT

SURVEY ! not executed (nesting level 2)
ENDCOMMENT

TWISS ! still not executed (nesting level 1)
ENDCOMMENT

TWISS ! executed again



Chapter 3. Physical Elements and Markers

Table 3.1: Element Definition Commands

Name Meaning Section
MARKER Marker for beam observation 3.2
DRIFT Drift space 3.3
SBEND Sector bending magnet 3.4
RBEND Rectangular bending magnet 3.4
QUADRUPOLE | Quadrupole 3.5
SEXTUPOLE Sextupole 3.6
O0CTUPOLE Octupole 3.7
MULTIPOLE Thin multipole 3.8
SOLENOID Solenoid 3.9
HKICKER Horizontal orbit corrector 3.10
VKICKER Vertical orbit corrector 3.10
KICKER Corrector for both planes 3.10
RFCAVITY RF cavity 3.11
ELSEPARATOR | electrostatic separator 3.12
HMONITOR Horizontal orbit position monitor 3.13
VMONITOR Vertical orbit position monitor 3.13
MONITOR Orbit position monitor (both planes) 3.13
INSTRUMENT | Space for beam instrumentation 3.13
ECOLLIMATOR | Elliptic collimator 3.14
RCOLLIMATOR | Rectangular collimator 3.14
YROT Rotation about vertical axis 3.15
SROT Rotation about longitudinal axis 3.15
BEAMBEAM Beam-beam interaction 3.16
MATRIX Arbitrary matrix 3.17
LUMP Concatenation of elements 3.20

3.1 Input Format

All physical elements are defined by statements of the form
label: keyword [,TYPE=name] {,attribute}

Example:

QF: QUADRUPOLE,TYPE=MQ,L=1.8,K1=0.015832

where

label A name to be given to the element (in the example QF),

keyword An element type keyword (in the example QUADRUPOLE),

TYPE A label to be attached to the element. It denotes the “engineering type” as defined
documentlabelin earlier versions of MAD, and may be used for selection of elements in
various commands like error definitions. (in the example MQ).

attribute  Normally has the form
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attribute-name=attribute-value

Attribute-name selects the attribute, as defined for the element type keyword (in the
example L and K1), and attribute-value gives it a value (in the example 1.8 and

0.015832).

Omitted attributes are assigned a default value, normally zero. For some attributes it is permitted to
enter their name only. In this case the attributes are assigned a special default value (Example: TILT
angles for magnets). If such usage is allowed, it is indicated with the respective attribute.

3.2 Marker Definitions

label: MARKER,TYPE=name

The simplest element which can occur in a beam line is the MARKER. It has no effect on the beam, but
it allows one to identify a position in the beam line, for example to apply a matching constraint. A

marker has only the TYPE attribute: Example:

M27: MARKER,TYPE=MM

3.3 Drift Space

label: DRIFT,TYPE=name,L=real

A DRIFT space has one real attribute:
L The drift length (default: 0 m)
Examples:

DR1: DRIFT,L=1.5
DR2: DRIFT,L=DR1[L],TYPE=DRF

The length of DR2 will always be equal to the length of DR1. The reference system for a drift space is

shown in Figure 3.1.
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Figure 3.1: Reference System for Straight Beam Elements

3.4 Bending Magnets

Two different type keywords are recognised for bending magnets, they are distinguished only by the

reference system used:
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Figure 3.2: Reference System for a Rectangular Bending Magnet; the signs of pole-face rotations are
positive as shown.

RBEND Rectangular bending magnet (Reference see Figure 3.2),

SBEND Sector bending magnet (Reference see Figure 3.3).

SBEND, TYPE=name,L=real,ANGLE=real,Kl=real,El=real,E2=real,&
TILT=real ,K2=real,Hl=real,K2=real ,HGAP=real ,FINT=real,&
K3=real

RBEND, TYPE=name,L=real,ANGLE=real,Kl=real,El=real,E2=real,&
TILT=real ,K2=real,Hl=real,K2=real ,HGAP=real ,FINT=real,&
K3=real

For both types, the following first-order attributes are permitted:

L The length of the magnet (default: 0 m). For a rectangular magnet the length is
measured along a straight line, while for a sector magnet it is the arc length of the
reference orbit.

ANGLE The bend angle (default: 0 rad). A positive bend angle represents a bend to the right,
i.e. towards negative z values.

K1 The quadrupole coefficient K; = (1/Bp)(0B,/0z). The default is 0 m~2. A positive
quadrupole strength implies horizontal focussing of positively charged particles.

E1 The rotation angle for the entrance pole face (default: 0 rad).

E2 The rotation angle for the exit pole face (default: 0 rad).

FINT The field integral, see [5] and below. The default value is 0.

HGAP The half gap of the magnet (default: 0 m).



Figure 3.3: Reference System for a Sector Bending Magnet; the signs of pole-face rotations are positive
as shown.

The pole face rotation angles are referred to the magnet model (see Figure 3.2 and Figure 3.3). The
quantities FINT and HGAP specify the finite extent of the fringe fields [5]. There they are defined as
follows:

< B B,- B
K, = FINT:/ v()(Bo y(s))ds, g = 2-HGAP.

e g- B2

The default values of zero corresponds to the hard-edge approximation, i.e. a rectangular field dis-
tribution. For other approximations, enter the correct value of the half gap, and one of the following
values for FINT:

Linear drop-off of the field 1/6
Clamped “Rogowski” fringing field 0.4
Un-clamped “Rogowski” fringing field 0.7
“Square-edged” non-saturating magnet 0.45

Entering the keyword FINT alone sets the integral to 0.5. This is a reasonable average of the above
values. The magnet may be rotated about the longitudinal axis by use of the following parameter:

TILT The roll angle about the longitudinal axis (default: 0 rad, a positive bend angle then
denotes a bend to the right). A vertical bend is defined by entering TILT with no value;
this implies a roll of #/2 rad, i.e. a positive bend angle denotes a deflection down. A
positive angle represents a clockwise rotation. The following second-order attributes
are permitted:

K2 The sextupole coefficient K, = (1/Bp)(8°B,)/(0z*) (default: 0 m~2).
H1 The curvature of the entrance pole face (default: 0 m™).
H2 The curvature of the exit pole face (default: 0 m™'). A positive pole face curvature

induces a negative sextupole component; i.e. for positive H1 and H2 the centres of
curvature of the pole faces are placed inside the magnet.

One third-order parameter is accepted, but at present it is ignored:



K3 The octupole coefficient K3 = (1/Bp)(9°B, /0z®) (default: 0 m™*).
Examples:
BR: RBEND,L=5.5,ANGLE=+0.001 ! Deflection to the right
BD: SBEND,L=5.5,ANGLE=+0.001,TILT ! Deflection down
BL: SBEND,L=5.5,ANGLE=-0.001 ! Deflection to the left
BU: SBEND,L=5.5,ANGLE=-0.001,TILT ! Deflection up

3.5 Quadrupole

label:

QUADRUPOLE,TYPE=name,L=real ,Kl=real ,TILT=real

A QUADRUPOLE
L

K1

TILT

Example:

has three real attributes:
The quadrupole length (default: 0 m).

The quadrupole coefficient K; = (1/Bp)(0B,/0z). The default is 0 m~2. A positive
quadrupole strength implies horizontal focussing of positively charged particles.

The roll angle about the longitudinal axis (default: 0 rad, i. e. a normal quadrupole).
A skewed quadrupole is defined by entering TILT with no value; this implies a roll of
7 /4 rad about the s-axis. A positive angle represents a clockwise rotation.

QF: QUADRUPOLE,L=1.5,K1=0.001

The reference system for a quadrupole is shown in Figure 3.1.

3.6 Sextupole

label:

SEXTUPOLE, TYPE=name,L=real ,K2=real ,TILT=real

A SEXTUPOLE has three real attributes:

K2

TILT

Example:

The sextupole length (default: 0 m).
The sextupole coefficient K, = (1/Bp)(9*B, /0z?) (default: 0 m~2).

The roll angle about the longitudinal axis (default: 0 rad, i. e. a normal sextupole).
A skewed sextupole is defined by entering TILT with no value; this implies a roll of
7 /6 rad about the s-axis. A positive angle represents a clockwise rotation.

S: SEXTUPOLE,L=0.4,K2=0.00134

The reference system for a sextupole is shown in Figure 3.1.



3.7 Octupole

label: OCTUPOLE,TYPE=name,L=real,K3=real,TILT=real

An OCTUPOLE has three real attributes:

L The octupole length (default: 0 m).
K3 The octupole coeflicient K3 = (1/Bp)(9°B, /02®) (default: 0 m~*).
TILT The roll angle about the longitudinal axis (default: 0 rad, i. e. a normal octupole). A

skewed octupole is defined by entering TILT with no value; this implies a roll of 7 /8 rad
about the s-axis. A positive angle represents a clockwise rotation.

Example:
03: OCTUPOLE,L=0.3,K3=0.543

The reference system for a octupole is shown in Figure 3.1. Octupoles are normally treated as thin
lenses, except when tracking by Lie-algebraic methods.

3.8 General Thin Multipole

label: MULTIPOLE,TYPE=name,LRAD=real, &
KOL=real ,TO=real ,KiL=real,Tl=real ., &
K2L=real ,T2=real ,K3L=real,T3=real,&
K4lL=real ,T4=real ,KEL=real,T5=real ,&
K6lL=real,T6=real ,K7L=real ,T7=real,&
K8L=real ,T8=real ,K9L=real ,T9=real

A MULTIPOLE is thin lens of arbitrary order, including a dipole:
LRAD A fictitious length, which is only used to compute synchrotron radiation effects.

KnL The multipole coefficient of order n: K,L = (L/Bp)(0"B,/0xz"). (default: 0 m~™).
This is the multipole coefficient integrated over the length of the multipole. The digit
n may take the values 0 < n < 9. The number of poles of the component is 2n + 2.
The most important error components of quadrupoles are: K5L, the twelve-pole, and
K9L, the twenty-pole. Superposition of several multipole components is permitted.

Tn The roll angle for the multipole component of order n about the s-axis (default: 0 rad,
i. e. a normal multipole). A skewed multipole is defined by entering Tn with no value;
this implies a roll of n/(2n + 2) rad about the s-axis. A positive angle represents a
clockwise rotation.

The multipole element has no length. Example:
M27: MULTIPOLE,K3L=0.0001,T3,K2L=0.0001

A multipole with no dipole component has no effect on the reference orbit, i.e. the reference system
at its exit is the same as at its entrance. If it includes a dipole component, it has the same effect on
the reference orbit as a dipole with zero length and deflection angle KOL.



3.9 Solenoid

label:

SOLENOID,TYPE=name,L=real ,KS=real

A SOLENOID has two real attributes:

L

KS

Example:

The length of the solenoid (default: 0 m)

The solenoid strength By/Bp (default: 0 rad/m). For positive KS and positive particle
charge, the solenoid field points in the direction of increasing s.

S0LO: SOLENOID,L=2.,K=0.001

The reference system for a solenoid is shown in Figure 3.1.

3.10 Closed Orbit Correctors

Three types of closed orbit correctors are available:

HKICKER A corrector for the horizontal plane,
VKICKER A corrector for the vertical plane,
KICKER A corrector for both planes.
label: HKICKER, TYPE=name,L=real,KICK=real,TILT=real
label: VKICKER, TYPE=name,L=real,KICK=real,TILT=real
label: KICKER, TYPE=name,L=real,HKICK=real,VKICK=real,TILT=real

They have the
L

KICK

HKICK

VKICK

TILT

following attributes:

The length of the closed orbit corrector (default: 0 m).

The kick angle for either horizontal or vertical correctors. (default: 0 rad).
The horizontal kick angle for a corrector in both planes (default: 0 rad).
The vertical kick angle for a corrector in both planes (default: 0 rad).

The roll angle about the longitudinal axis (default: 0 rad). A positive angle represents
a clockwise rotation of the corrector.

A positive kick increases p, or p, respectively. Examples:

HK1: HKICKER, KICK=0.001,TILT=RADDEG*10.0
VK3: VKICKER, KICK=0.0005
KHV: KICKER, HKICK=0.001,VKICK=0.0005

The first kicker is rotated about the longitudinal axis by 10 degrees. The reference system for a closed

orbit corrector

is shown in Figure 3.1.



3.11 RF Cavity

label:

RFCAVITY,TYPE=name,L=real ,VOLT=real,LAG=real , &
HARMON=integer ,BETRF=real ,PG=real,&
SHUNT=real,TFILL=real

An RFCAVITY has seven real attributes and one integer attribute:

L

VOLT

LAG

HARMON

BETRF

PG

SHUNT

TFILL

The length of the cavity (default: 0 m)
The peak RF voltage (default: 0 MV). The effect of the cavity is

0F = VOLT sin(2x(LAG — hfyAt)).

The phase lag in multiples of 27 (default: 0).

The harmonic number h (no default). Note that the RF frequency is computed from
the harmonic number and the revolution frequency f,. The frequency attribute FREQ
must no longer be used.

RF coupling factor (default: 0).
The RF power per cavity (default: 0 MW).
The relative shunt impedance (default: 0 M /m).

The filling time of the cavity (default: 0 us).

A cavity requires the particle energy (ENERGY) and the particle charge (CHARGE) to be set by a BEAM
command (see Section 5.2) before any calculations are performed. Example:

BEAM,PARTICLE=ELECTRON,ENERGY=50.0

CAVITY: RFCAVITY,L=10.0,V0LT=150.0,LAG=0.0,HARMON=31320

The reference system for a cavity is shown in Figure 3.1.

3.12 Electrostatic Separator

label:

ELSEPARATOR,TYPE=name,L=real ,E=real,TILT=real

An ELSEPARATOR (electrostatic separator) has three real attributes:

L

E

TILT

The length of the separator (default: 0 m).

The electric field strength (default: 0 MV/m). A positive field increases p, for positive
particles.

The roll angle about the longitudinal axis (default: 0 rad). A positive angle represents
a clockwise rotation of the separator.

A separator requires the particle energy (ENERGY) and the particle charge (CHARGE) to be set by a BEAM
command (see Section 5.2) before any calculations are performed. Example:

BEAM,PARTICLE=POSITRON,ENERGY=50.0
SEP: ELSEPARATOR,L=5.0,E=0.5

The reference system for a separator is shown in Figure 3.1.



3.13 Beam Position Monitor

A beam monitor acts on the beam like a drift space. In addition it serves to record the beam position
for closed orbit corrections. Four different types of beam position monitors are recognised:

HMONITOR Monitor for the horizontal beam position,
VMONITOR Monitor for the vertical beam position,
MONITOR Monitor for both horizontal and vertical beam position.

INSTRUMENT A place holder for any type of beam instrumentation. Optically it behaves like a
drift space; it returns no beam observation. It represent a class of elements which is
completely independent from drifts and monitors.

label: HMONITOR, TYPE=name,L=real
label: VMONITOR, TYPE=name,L=real
label: MONITOR, TYPE=name,L=real
label: INSTRUMENT, TYPE=name,L=real

A beam position monitor has one real attribute:

L The length of the monitor (default: 0 m). If the length is different from zero, the beam
position is recorded in the centre of the monitor.

Examples:

MH: HMONITOR,L=1
MV: VMONITOR

The reference system for a monitor is shown in Figure 3.1.

3.14 Collimators (Aperture Definitions)

Two types of collimators are defined:

ECOLLIMATOR Elliptic aperture,

RCOLLIMATOR Rectangular aperture.

label: ECOLLIMATOR,TYPE=name,L=real, XSIZE=real,YSIZE=real
label: RCOLLIMATOR,TYPE=name,L=real,XSIZE=real,YSIZE=real

Either type has three real attributes:

L The collimator length (default: 0 m).
XSIZE The horizontal half-aperture (default: unlimited).
YSIZE The vertical half-aperture (default: unlimited).

For elliptic apertures, XSIZE and YSIZE denote the half-axes respectively, for rectangular apertures
they denote the half-width of the rectangle. Optically a collimator behaves like a drift space, but
during tracking, it also introduces an aperture limit. The aperture is checked at the entrance. If the
length is not zero, the aperture is also checked at the exit. The reference system for a collimator is
shown in Figure 3.1. Example:

COLLIM: ECOLLIMATOR,L=0.5,XSIZE=0.01,YSIZE=0.005



3.15 Coordinate Transformations

3.15.1 Rotation About the Vertical Axis

label: YROT,TYPE=name,ANGLE=real

The element YROT rotates the reference system about the vertical (y) axis. The reference system is
shown in Figure 3.4. YROT has no effect on the beam, but it causes the beam to be referred to the new
coordinate system

zy = 2y cosf — s,8inb, 8y = ®18In0 + 51 cos .
It has one real attribute:

ANGLE The rotation angle 6 (default: 0 rad). It must be a small angle, i.e. an angle comparable
to the transverse angles of the orbit.

A positive angle means that the new reference system is rotated clockwise about the local y-axis with
respect to the old system. Example:

KINK: YROT,ANGLE=0.0001

T T

beam

Figure 3.4: Reference System for a Rotation Around the y-Axis

3.15.2 Rotation Around the Longitudinal Axis

label: SROT,TYPE=name,ANGLE=real

The element SROT rotates the reference system about the longitudinal (s) axis. The reference system
is shown in Figure 3.5. SROT has no effect on the beam, but it causes the beam to be referred to the
new coordinate system

Ty = &1 cos Y + yy sin Y, Ys = @1 sin e + yy cos .
It has one real attribute:

ANGLE The rotation angle ¢ (default: 0 rad)



A positive angle means that the new reference system is rotated clockwise about the s-axis with respect
to the old system. Example:

ROLL1: SROT,ANGLE=PI/2.

ROLL2: SROT,ANGLE=-PI/2.
HBEND: SBEND,L=6.0,ANGLE=0.01
VBEND: LINE=(ROLL1,HBEND,ROLL2)

The above is a way to represent a bend down in the vertical plane, it could be defined more simply by

VBEND: SBEND,L=6.0,ANGLE=0.01,TILT
N

Y2

beam

Ly

/ z

Figure 3.5: Reference System for a Rotation Around the s-Axis

3.16 BEAMBEAM Element

label: BEAMBEAM, TYPE=name,SIGX=real,SIGY=real,XMA=real,YMA=real,&
CHARGE=real

The command BEAMBEAM may be inserted in a beam line to simulate a beam-beam interaction point.t
It has five real attributes:

SIGX The horizontal extent (standard deviation) of the opposite beam (default: 0 m).

SIGY The vertical extent (standard deviation) of the opposite beam (default: 0 m).

XMA The horizontal displacement of the opposite beam with respect to the ideal orbit (de-
fault: 0 m).

YMA The vertical displacement of the opposite beam with respect to the ideal orbit (de-
fault: 0 m).

CHARGE The charge of particles in the opposite beam in proton charges (default: 0). Entering

the keyword CHARGE alone sets the charge to —1.

!Contributed by J. M. Veuillen (1987).



A beam-beam interaction requires the particle energy (ENERGY) and the charge of the particles in the
beam considered (CHARGE), as well as the number of particles per bunch (NPART) to be set by a BEAM
command (see Section 5.2) before any calculations are performed. Example:

BEAM, PARTICLE=POSITRON,NPART=1.E12,ENERGY=50.0
BB: BEAMBEAM,SIGX=1.E-3,SIGY=5.E-4,CHARGE=1.

3.17 Arbitrary MATRIX Element

MATRIX, TYPE=name,RM(1,1)=real,...,RM(6,6)=real,&
TM(1,1,1)=real,...,TM(6,6,6)=real

The MATRIX permits definition of an arbitrary transfer matrix. It has two real array attributes:
RM(i,k) Defines the element (¢, k) of the linear transfer matrix.
TM(i,k,1)  Defines the element (, k,!) of the second-order TRANSPORT matrix.
Matrix elements not entered are taken from the identity transformation, i.e.
1,ifi=Fk,

RM(I’k):{O, ifitk ™(i,k,1) = 0.

3.18 Editing Element Definitions

The EDIT command of former MAD versions is no longer available, but an element definition can be
changed in two ways:

e FEntering a new definition: The element will be replaced in the main beam line expansion.

e FEntering the element name together with new attributes: The element will be updated in place,
and the new attribute values will replace the old ones.

This example shows two ways to change the strength of a quadrupole:

QF: QUADRUPOLE,L=1,K1=0.01 ! Original definition of QF
QF: QUADRUPOLE,L=1,K1=0.02 ! Replace whole definition of QF
QF ,K1=0.02 ! Replace value of K1

When the type of the element remains the same, replacement of an attribute is the more efficient way.
Element definitions can be edited freely. The changes do not affect already defined objects which
belong to its class (see Section 3.19). The element to be modified should not be member of a beam
line sequence (see Section 4.2).
Beam elements or beam lines (see Section 4) can be replaced by other beam elements or beam lines.
However, if a beam line is involved in the replacement, and the replaced item occurs in the working
beam line (see Section 5.1), the working beam line becomes obsolete and is deleted automatically.

3.19 Element Classes

The concept of element classes solves the problem of addressing instances of elements in the accelerator
in a convenient manner. It will first be explained by an example. All the quadrupoles in the accelerator
form a class QUADRUPOLE. Let us define three subclasses for the focussing quadrupoles, the defocussing
quadrupoles, and the skewed quadrupoles:



MQF: QUADRUPOLE,L=LQM,K1=KQD ! Focussing quadrupoles
MQD: QUADRUPOLE,L=LQM,K1=KQF ! Defocussing quadrupoles
MQT: QUADRUPOLE,L=LQT,TILT ! Skewed quadrupoles

These classes can be thought of as new keywords which define elements with specified default at-
tributes. We now use theses classes to define the real quadrupoles:

QD1: MQD ! Defocussing quadrupoles
QD2: MQD

QD3: MQD

QF1: MQF ! Focussing quadrupoles
QF2: MQF

QF3: MQF

QT1: MQT,K1=KQT1 ! Skewed quadrupoles

QT2: MQT,K1=KQT2

These quadrupoles inherit all unspecified attributes from their class. This allows to build up a hierarchy
of objects with a rather economic input structure.

The full power of the class concept is revealed when object classes are used to select instances of
elements for printing. Example:

PRINT,QUADRUPOLE ! Print at all quadrupoles
PRINT,MQT[1/2] ! Print at the first two skewed quadrupoles

More examples appear in Section 5.3.

More formally, for each element keyword MAD maintains a class of elements with the same name.
A defined element becomes itself a class which can be used to define new objects, which will become
members of this class. A new object inherits all attributes from its class; but its definition may
override some of those values by new ones. All class and object names can be used in range selections,
providing a powerful mechanism to specify positions for matching constraints and printing.

3.20 LUMP Element

The command LUMP concatenates transfer maps. It has the form

label: LUMP,TYPE=name,0RDER=integer,LINE=1line

It expands the beam line 1line, and evaluates its transfer map to order ORDER. The map is associated
with the name label. In other words this command pre-calculates a transfer map and stores it for
future use.

The ORDER parameter must lie in the range 2 < ORDER < 6. It refers to the order of the corre-
sponding Hamiltonian; ORDER = 2 denotes a linear transformation, ORDER = 3 includes all terms up to
second order in the TRANSPORT sense.

In a TWISS command MAD considers terms up to ORDER = 3. To handle chromatic effects properly,
all LUMPs used in a beam line should have ORDER > 3. However, in a TWISS command MAD ignores
any terms with ORDER > 3. MAD is not capable to find the integral part of the phase advance over a
LUMP. Thus, for ORDER > 2 a, 3, D are correct, as well as the fractional parts of p. If ORDER > 3, the
chromatic functions are also correct.



For tracking by the TRANSPORT method MAD limits the order of tracking to three. For tracking
bye the Lie-algebraic method, it always uses the order of the LUMP definition. For linear elements,

tracking can be speeded up considerably, if one selects ORDER = 2.
Some important points must be kept in mind about this element:

The transfer map is evaluated when used for the first time, it is only re-evaluated when param-
eters of the line change.

Any sub-lines must be defined before using the LUMP. MAD may otherwise complain about
undefined sub-lines when tracking.

The name label behaves like an element, it is not a beam line. The individual elements building
up the LUMP cannot be misaligned nor mispowered. It is however permissible to misalign (not
to mispower) the LUMP as a whole. A LUMP can also be used in a SURVEY command. It must not
be used in a HARMON run.

Concatenation of too many elements causes truncation of high-order effects. The number of
concatenated elements should therefore not be too large.

As from Version 8.2/4 of MAD transfer maps are recalculated automatically for a lump if one
of the elements contained in this lump is changed. Use of a lump in matching is always safe.
However lumping saves time only if the elements in a lump are not varied.

Examples for LUMP definitions:

SEC: LINE=(QF,D,QD,D)
LSEC: LUMP,0ORDER=4,LINE=SEC

Putting the line sequence directly in the LUMP has the same effect:

LSEC:LUMP,0RDER=4,LINE=(QF,D,QD,D)

In earlier versions of MAD it could save time when bending magnets were defined as lumps. From
Version 8 MAD treats bending magnets as lumps automatically, it will be useless if the user attempts

to do so.



Chapter 4. Beam Lines, Sequences, Lists, Ranges,

Selections
Table 4.1: Line Definition Commands
Name Meaning Section
LINE Beam line definition 4.1
SEQUENCE | Beam line sequence 4.2
LIST Replacement list definition 4.6

4.1 Beam Lines

The accelerator to be studied is known to MAD as a sequence of physical elements called a beam line.
A beam line is built from simpler beam lines whose definitions can be nested to any level. A powerful
syntax allows to repeat, to reflect, or to replace pieces of beam lines. Formally a beam line is defined
by a LINE command:

label(arg{,arg}): LINE=(member{,member})

Label gives a name to the beam line for later reference. The formal argument list (arg{,arg}) is
optional (see below). Each member may be one of the following:

e Element label,

Beam line label,

Sub-line, enclosed in parentheses,

Formal argument name,

Replacement list label.

Beam lines may be nested to any level.

4.1.1 Simple Beam Lines

The simplest beam line consists of single elements:
label: LINE=(member{,member})
Example:

L: LINE=(A,B,C,D,A,D)
USE,L

The USE command tells MAD to perform all subsequent calculations on the sequence
A,B,C,D,A,D
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4.1.2 Sub-lines

Instead of referring to an element, a beam line member can refer to another beam line defined in a
separate command. This provides a shorthand notation for sub-lines which occur several times in
a beam line. Lines and sub-lines can be entered in any order, but when a line is expanded, all its
sub-lines must be known. Example:

L: LINE=(A,B,S,B,A,S,A,B)
S: LINE=(C,D,E)
USE,L

This example produces the following expansion steps:
1. Replace sub-line S:
(4,B,(c,D,E),B,4,(C,D,E),A,B)
2. Omit parentheses:

A,B,C,D,E,B,A,C,D,E,A,B

4.1.3 Reflection and Repetition

An unsigned repetition count and an asterisk indicate repetition of a beam line member. A minus
prefix causes reflection, i.e. all elements in the subsequence are taken in reverse order. Sub-lines of
reflected lines are also reflected, but physical elements are not. If both reflection and repetition are
desired, the minus sign must precede the repetition count. Example:

R: LINE=(G,H)

S: LINE=(C,R,D)

T: LINE=(2%S,2%(E,F),-S,-(4,B))
USE,T

Proceeding step by step, this example produces
1. Replace sub-line S:

((C,R,D),(C,R,D),(E,F),(E,F),(D,-R,C),(B,A))
2. Replace sub-line R:
((c,,n,n,c,G,n,n,E,n,E,H,O,H,:),C),(B,4)
3. Omit parentheses:
¢,6,4,0,¢,G,H,D,E,F,E,F,D,H,G,C,B,A

Note that the inner sub-line R is reflected together with the outer sub-line S.

4.1.4 Replaceable Arguments

A beam line definition may contain a formal argument list, consisting of labels separated by commas
and enclosed in parentheses. Such a line can be expanded for different values of its arguments. When
it is referred to, its label must be followed by a list of actual arguments separated by commas and
enclosed in parentheses. Each top level member of the list represents one argument; it can contain
anything which may occur as a beam line member. MAD assumes an implicit pair of parentheses
around each argument. The number of actual arguments must agree with the number of formal
arguments. All occurrences of a formal argument on the right-hand side of the line definition are
replaced by the corresponding actual argument. Example:



S: LINE=(A,B,C)
L(X,Y): LINE=(D,X,E,3*Y)
USE, L (4*F,-2*3)

Proceeding step by step, this example generates the expansion
1. Replace formal arguments:
(D, (4%F) ,E,3%(-2%(4,B,C)))
2. Combine repetition counts for last sub-line:
(D, (4%F) ,E,-6%(A,B,C))
3. Expand repetitions and reflection:
(,(F,F,F,F),E,(C,B,4),(C,B,A),(C,B,A),(C,B,A),(C,B,A),(C,B,A))
4. Omit parentheses:
D,F,F,F,F,E,C,B,A,C,B,A,C,B,A,C,B,A,C,B,A,C,B,A

Second example:

CEL(SF,SD): LINE=(QF,D,SF,D,B,D,QD,D,SD,D,B,D)
ARC: LINE=(CEL(SF1,SD1),CEL(SF2,SD2),CEL(SF1,SD1))
USE, ARC

This example generates the expansion
1. Replace the line CEL and its formal arguments:

((qF,D, (sF1),D,B,D,QD,D, (SD1),D,B,D)
(QF,D, (SF2),D,B,D,QD,D, (SD2) ,D,B,D)
(QF,D, (SF1),D,B,D,QD,D, (SD1),D,B,D))

2. Omit parentheses:

qQ¥,D,SF1,D,B,D,QD,D,SD1,D,B,D
qQ¥,D,SF2,D,B,D,QD,D,SD2,D,B,D
qQ¥,D,SF1,D,B,D,QD,D,SD1,D,B,D

4.2 Beam Line Sequences

When MAD runs in an accelerator control system, the sequence of elements is usually generated from
a data base. For this purpose there is a command

label: SEQUENCE,REFER=keyword
object: class,AT=real{,attributes}

ENDSEQUENCE

It reads a sequence of element definitions, compiles a data bank which resembles a beam line definition,
and gives it the name label. The resulting sequence can be used like a beam line. For each non-
drift element in the sequence one element definition appears following the SEQUENCE command and
preceding the ENDSEQUENCE command. These look like the definitions described in Chapter 3, with
the following differences:



¢ The name object must be unique; it must not be defined earlier in the data.
e The second name class on the definition must be a class name.

e The class name must be followed immediately by the attribute AT=real. This specifies the
longitudinal position of the element with respect to the beginning of the sequence. The attribute
REFER specifies the reference points for the elements:

CENTRE The element centre is placed at the given position (default).
ENTRY The element entry is placed at the given position.
EXIT The element exit is placed at the given position.

The elements must be entered in order of increasing position, and must not overlap.

¢ The elements object inherit the attributes from class. If no further attributes appear, MAD
uses the data bank of class for the element data. In this case class cannot be modified
subsequently. If further attributes exist, MAD makes a copy of the data for the class, as if it
had read a normal element definition.

When the sequence is expanded in a USE command, MAD generates the drift spaces for proper posi-
tioning.

For efficiency reasons MAD imposes an tmportant restriction for variable lengths. If the lengths
of elements and their positions are defined as constant values, MAD gives the intervening drifts a
constant length as well, and checks that the drift lengths are all positive. In this case the drift lengths
can never be varied, and a change in element length affects the total length of the system.

Variation of an element position and/or length is possible. The element length or position to
be varied must then be defined by an expression. This causes MAD to adjust the dependent drift
length(s) such as to keep all definitions consistent. However, it is the responsibility of the program
user that drift spaces do not become negative. Example:

! Define element classes for a simple cell:

B: SBEND,L=35.09, ANGLE = 0.011306116
QF: QUADRUPOLE,L=1.6,K1=-0.02268553
QD: QUADRUPOLE,L=1.6,K1=0.022683642
SF: SEXTUPOLE,L=0.4,K2=-0.13129

SD: SEXTUPOLE,L=0.76,K2=0.26328

! Define the cell as a sequence:
CELL: SEQUENCE

Bi: B, AT=19.115

SF1: SF, AT=37.42

QF1: QF, AT=38.70

B2: B, AT=58.255,ANGLE=B1 [ANGLE]
SD1: SD, AT=76.74

QD1: QD, AT=78.20

ENDM: MARKER, AT=79.0

ENDSEQUENCE

In this example all members of the sequence use the storage of their class except the element B2 which
uses a copy because one of its attribute has been redefined.

4.3 Editing a Beam Line Sequence

A beam line sequence may be edited before it is used in a USE command. Seven commands are available
for this purpose:



SEQEDIT,SEQUENCE=name

INSTALL ,ELEMENT=name,AT=value [,FROM=name]

REMOVE ,ELEMENT=name

MOVE,ELEMENT=name [,BY=value] [,TO=value [,FROM=name]]
REFLECT

CYCLE,START=name

ENDEDIT

They are explained in detail in the next sub-sections.

4.3.1 Making a sequence known for editing

Before modifying a sequence, its name must be set for editing by the command

SEQEDIT,SEQUENCE=name

MAD will make the sequence name the current sequence being edited. Once editing is finished, one
should give the command

ENDEDIT

4.3.2 Installing an Element

A new element can be installed in the edited sequence by the command

INSTALL ,ELEMENT=name,AT=value [,FROM=name]

It has the following attributes:

ELEMENT The name of the element to be installed.
AT The position where to install the element.
FROM The name of the element to be taken as the origin. If the FROM attribute does not

appear, AT implies an absolute displacement from the beginning of the sequence; if it
does, the distance is relative to the position of that element. A relative position may
be negative.

4.3.3 Removing Elements

The command

REMOVE ,ELEMENT=name ,PATTERN=string

removes all elements from the sequence which match at least one of the two following conditions:

e The element is member of the class name,
¢ The element name matches the “wild-card” pattern string.

e wild-card
Examples:

REMOVE,ELEMENT=DRIFT
REMOVE ,PATTERN="S.*QD.*R1"

The first command removes all explicit drifts from the sequence, and the second command removes the
elements beginning with the letter S, containing the string QD, and ending with the string .R1. Note
that the two occurrences of . * each stand for an arbitrary number (including zero) of any character,
and the occurrence \ . stands for a literal period. For definitions of patterns refer to Section 1.7.



4.3.4 Moving an Element

The command

MOVE,ELEMENT=name [,BY=value] [,TO=value [,FROM=name]]

moves an element to a new location. Its attributes are:

ELEMENT The name of the element to be moved.

BY The amount by which the element is to be moved.

T0 The new position for the element.

FROM The name of the element to be taken as the origin. If the FROM attribute does not

appear, TO implies an absolute displacement from the beginning of the sequence; if it
does, the distance is relative to the position of that element. A relative position may
be negative. The MOVE command may change the order of elements in the sequence.

4.3.5 Reflecting a Sequence

The command

REFLECT

reverses the order of all elements in the sequence currently being edited. All further edit commands
must refer to the new positions.

4.3.6 Cyclic interchange

The command

CYCLE,START=name

makes a cyclic interchange of all elements in the current edit sequence so as to start at the element
name. This element should preferably be a MARKER. All further edit commands must refer to the new
positions.

4.3.7 Example for the Sequence Editor

SEQ:SEQUENCE
Bi: B, AT=19.115
SF1: SF, AT=37.42
QF1: QF, AT=38.70
B2: B, AT=58.255
SD1: SD, AT=76.74
QD1: QD, AT=78.20
ENDM: MARKER, AT=79.0

ENDSEQ

B2W:B2,ANGLE=0.1*B2[ANGLE]
SEQEDIT,SEQUENCE=SEQ
MOVE,ELEMENT=SF1,T0=-1.27,FROM=QF1
MOVE,ELEMENT=SD1,BY=0.01
REMOVE,ELEMENT=B2

INSTALL ,ELEMENT=B2W,AT=58.255
ENDEDIT



This example moves the two sextupoles and replaces the element B2 by the element B2W.

4.4 More Examples for Beam Lines

4.4.1 CERN SPS Lattice

The CERN SPS lattice may be represented using the following beam elements:

QF: QUADRUPOLE,... ! focussing quadrupole

QD: QUADRUPOLE,... ! defocussing quadrupole

B1: RBEND,... ! bending magnet of type 1

B2: RBEND,... ! bending magnet of type 2

DS: DRIFT,... ! short drift space

DM: DRIFT,... ! drift space replacing two bends
DL: DRIFT,... ! long drift space

The SPS machine is represented by the lines

SPS: LINE=(6*SUPER)
SUPER: LINE=(7+P44,INSERT,7*P44)
INSERT: LINE=(P24,2%P00,P42)

POO: LINE=(QF,DL,QD,DL)

P24: LINE=(QF,DM,2%B2,DS,PD)
P42: LINE=(PF,QD,2%¥B2,DM,DS)
P44: LINE=(PF,PD)

PD: LINE=(QD,2*B2,2*B1,DS)
PF: LINE=(QF,2%B1,2*B2,DS)

In order not to overload the example, small gaps between magnetic elements have been omitted.

4.4.2 LEP Lattice

A similar method of defining accelerator structures has been used in Reference [16] to define the LEP
structure. Translation of those element sequences to the MAD input format gives:

LEP: LINE=(4*SUP)

SUP: LINE=(0CT,-0CT)

OCT: LINE=(LOBS,RFS,DISS,ARC,DISL,RFL,LOBL)
LOBS: LINE=(L1,QS1,L2,Q82,L3,Q83,L4,Q34)

RFS: LINE=(L5,QS5,L5,Q86,15,2*(Qs7,L5,QS8,L5))

DISS: LINE=(QS11,L25,BW,L22,QS12,125,B4,122,QS13,L25,B4,
L22,Q814,L25,B4,1L31,Q815,L25,B4,L32,5F,L23,Q516)

ARC: LINE=(L21,B6,L22,5D,L23,QD,
7% (CELL(SF1,3D1),CELL(SF,SD)),CELL(SF1,SD1),
L24,B86,141,QF,L21,B6,L.22,5D4,123,QD,
7*(CELL(SF4,SD3) ,CELL(SF3,SD4)),CELL(SF4,SD3),
L24,B6,122,SF3,1.23)

DISL: LINE=(QL16,1.34,B4,.22,QL15,1L33,B4,122,QL14,L25,B4,
L22,QL13,L25,B4,122,QL12,L25,BW,L22,QL11)

RFL: LINE=(2*(L5,QL8,L5,QL7),L5,QL6,L5,QL5,L5)
LOBL: LINE=(QL4,L14,QL3,L13,QL2,L12,QL1,L11)
BW: LINE=(W,L26,W)

B4: LINE=(B,L26,B)



B6: LINE=(B,L26,B,L26,B)
CELL(SF,SD): LINE=(L24,B6,L22,5F,L23,QF,L21,B6,.22,SD,L23,QD)

Here the element definitions have been left open.

4.5 Beam Line References

Many MAD commands require a reference to a beam line. Normally one enters the label of a beam
line. If the beam line is defined with formal arguments, the label is followed by an actual argument
list. MAD also accepts a sequence enclosed by parentheses instead of a name. Examples:

USE,CELL1
USE,CELL(SF1,SD1)
USE, (QF,D,QD,D)

4.6 Replacement Lists

The replacement list provides a powerful tool to describe complex machines. It replaces a set of
identical labels in a sequence in turn by different items. A successive refinement of the machine
description is made possible by redefining elements as beam lines or as replacement lists. A replacement
list definition resembles a beam line definition:

label: LIST=(member{,member})

All items which can occur in a beam line can also occur in a list. The effect of a replacement list on
a beam line is defined as follows:

1. Expand all replacement lists to the level of single labels. If a list member is a beam line name,
do not expand it. Mark the first label of each expanded list as current.

2. Expand the given beam line. Each time the label of a replacement list is encountered, replace it
by the current label in this list and mark the following label of the list as current.

3. If a substituted label is a beam line, expand it.

To study several arrangements of sextupole families, one may define one or more replacement lists for
each arrangement. There is no need to change anything else in the machine structure. Example:

RING: LINE=(5*(QF,D,SF,D,B,D,QD,D,SD,D,B))

SF: LIST=(2*(SF1,SF2),SF1)
SD: LIST=(2*(SD1,8D2),SD1)
USE,RING

In this example MAD proceeds as follows:
1. Expand the two lists:

SF: LIST=(SF1,SF2,SF1,SF2,SF1)
SD: LIST=(SD1,SD2,SD1,SD2,SD1)

2. Expand the line RING:

RING: LINE=(QF,D,SF,D,B,D,QD,D,SD,D,B,D,
qQr,D,SF,D,B,D,QD,D,SD,D,B,D,
qQr,D,SF,D,B,D,QD,D,SD,D,B,D,
qQr,D,SF,D,B,D,QD,D,SD,D,B,D,
Qf,D,sF,D,B,D,QD,D,SD,D,B,D)



3. Replace labels in RING:

RING: LINE=(QF,D,SF?,D,B,D,QD,D,SD1,D,B,D,
qQ¥,D,SF2,D,B,D,QD,D,SD2,D,B,D,
qQ¥,D,SF1,D0,B,D,QD,D,SD1,D,B,D,
qQ¥,D,SF2,D,B,D,QD,D,SD2,D,B,D,
Qf,D,SF1,D,B,D,QD,D,SD1,D,B,D)

In a second example, we replace some drift spaces by special insertions:

FODO: LINE=(4*(QF,D,QD,D))

D: LIST=(DD,DC,3%DD,DC,2*DD)
DD: DRIFT,L=2.0
DC: LINE=(D1,PICKUP,D1)
D1: DRIFT,L=0.5
PICKUP: MONITOR,L=1.0
USE,FODO

In this example we have the following steps:

1. Expand the list D (note that DC is not expanded yet):

D: LIST=(DD,DC,DD,DD,DD,DC,DD,DD)
2. Expand the beam line FODO:

FODO: LINE=(QF,D,QD,D,QF,D,QD,D,QF,D,QD,D,QF,D,QD,D)
3. Replace labels in the beam line FODO:

FODO: LINE=(QF,DD,QD,DC,QF,DD,QD,DD,
qQF,DD,QD,DC,QD,DD,QD,DD)

4. Expand the line DC:

FODO: LINE=(QF,DD,QD,D1,PICKUP,D1,QF,DD,QD,DD,
QF,DD,QD,D1,PICKUP,D1,QF,DD,QD,DD)

Replacement lists are circular. When a list is exhausted, and more replacement labels are required,
the current element is reset to the first one, and replacement continues. Without changing the result,
the lists in the first example could therefore also be written as

SF: LIST=(SF1,SF2)
SD: LIST=(SD1,SD2)

Replacement lists should not be used when lines are reflected. If a replacement list occurs within a
reflected part of a beam line, MAD never reflects the replacement list and gives a warning message.
Unless the list happens to be symmetric, the expansion would be wrong. Care should also be taken
when expanding sub-lines of lines which refer to replacement lists. By definition, MAD always begins
replacement at the first label of a replacement list. Here is an example what could go wrong:

CELL1: LINE=(...,SF,...)

CELL2: LINE=(...,SF,...)

CELL3: LINE=(...,SF,...)

SF: LIST=(SF1,SF2,SF3)

ARC: LINE=(CELL1,CELL2,CELL3)
USE,CELL3



After the command USE, ARC the cell CELL3 will contain SF3. However, after the command USE,
CELL3 the cell CELL3 will contain SF1. In case of doubt, use the PRINT command and check the
correct replacement.

4.7 Ranges and Sets of Observation Points in a Line

Many MAD commands allow for the possibility to process or display a range or a subset of the elements
occurring in the beam line expanded by the latest USE command. There are two selection mechanisms:

e A range (an interval) can be defined starting at the exit of a given element and ending at the
exit of another element. The syntax is

element-occurrence 1 / element-occurrence 2

If the range consists of only one element or, it may be entered as

element-occurrence

An element-occurrence can be defined by

o A MAD index:

#index

index is the number of physical elements preceding the position in the expanded beam line.
There are four predefined MAD indices:

#S The start of the full beam line expanded by USE,

*E The end of the full beam line expanded by USE,

#F The exit of the first element in RANGE as read by USE,
#L The exit of the last element in RANGE as read by USE.

o A class or element name and its occurrence count:

label[occurrencel

where label is a class or element name, and occurrence is the occurrence number of that
name in the expanded beam line.

o The explicit element name, if there is only one occurrence.

label

Names are always unique in a SEQUENCE.

o A set (a selection) of elements belonging to the same class (e. g. QUADRUPOLE) or beam line is
made by

label[occurrence 1/occurrence 2]

If 1abel is a class name, this refers to all elements of that class, starting at a occurrence 1 and
ending at occurrence 2. If 1abel is a beam line name, this refers to all elements belonging to
that beam line, starting at a occurrence 1 and ending at occurrence 2. Each occurrence is
an occurrence number for the class or beam line. A single occurrence is selected by the syntax

label[occurrencel

If all occurrences are implied, one may simply use



label

e A range
Occurrences and physical elements are numbered relative to the entire beam line expanded by the
latest USE command. They are not affected when RANGE is set in the USE command.
4.7.1 Examples

Assume the following definitions:

M: MARKER

S: LINE=(C,M,D)

L: LINE=(A,M,B,2%S,A,M,B)
USE,L,RANGE=M[2] /M[3]

The line L is equivalent to the sequence
A,M,B,C,4,D,C,M,D,A,M,B

Examples for ranges:

#4/46 c[11,mM[2],D[1],
S[1] The entire first sub-line S, that is from entry of first S to exit of first S, both included,
S All positions within both occurrences of S, including entries and exits of S,

A[1]1/A[2] Positions A[1] to A[2] including all intermediate positions,
M[2]/M[3] From second to third M, also known as #F/#L,
L The entire line L, can also be written as #S/4#E.

Examples for single positions:

#0 or #S At the beginning of the line L,

c[1] After the first element C, can be written as #4,
M[3] After the third marker M, also #8 or #L,
#E After the last element of the line L.

Examples for multiple positions:

A All A[i], that is A[1] and A[2],

AL1/2] A[1] and A[2] only,

M All M[i], that is M[1],M[2],M[3],M[4], can also be written as M[1/4],
M[2/3] M[2] and M[3] only.

More examples can be found in Section 5.10.



Chapter 5. Action Commands

Table 5.1: Environment Setting and Action Commands

Name Meaning Section
USE Select working beam line 5.1
BEAM Beam data: particle energy and charge, emittances etc. 5.2
PRINT Select print positions 5.3
SELECT Select output positions 5.3
SURVEY Print geometry of machine 5.5
TWISS Print lattice functions 5.6
IBS Intra-beam scattering 5.7
EMIT Equilibrium emittances 5.8.1
EIGEN Eigenvectors for normal modes 5.8.2
ENVELOPE | Beam envelopes in 3 degrees of freedom 5.8.2
TWISS3 Mais-Ripken lattice functions 5.8.2
DYNAMIC | Dynamic normal form analysis 5.9
STATIC Static normal form analysis 5.9
SPLIT Interpolate within element for OPTICS command 5.4
OPTICS Output lattice functions and element strengths for control | 5.10
system

5.1 USE Statement

The USE statement specifies the beam line and its range to be used in subsequent commands. It must
be entered before any physics computation is requested. It has the form

USE,PERIOD=1ine,RANGE=range,SYMM,SUPER=1integer

If the PERIOD attribute appears, the USE command causes the following actions:
¢ Replace formal arguments by the corresponding actual arguments,
e Insert sub-lines in the proper places,
¢ Expand reflections and repetitions of sub-lines,
o Reset all selection flags (see Section 5.3),
¢ Clear all error definitions (see Chapter 8),

A data structure is generated containing one entry for each beam element occurring in the beam
line, and one entry for the entrance and exit of each beam line or sub-line. This structure remains
in memory until another USE creates a new one, or until the replacement of a beam element or beam
line makes it invalid. A subsequent USE command referring to the same beam line will recreate the
structure, and effectively clear all selection flags and error definitions.

If the RANGE attribute appears, USE marks beginning and end of range for future use. All subse-
quent commands which require a beam line operate on the range selected. Example:

A: LINE=(...,B,...) ! definition of A
B: LINE=(...) ! definition of B
USE, A ! expand beam line A
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.. ! some actions
B: LINE=(...) ! redefinition of B kills sequence
USE, A ! new expansion of beam line A
! more actions

The USE statement has four attributes:

PERIOD The beam line to be expanded (see Section 4.5). If omitted, the previous line is used
without a new expansion.

RANGE The range of the beam line to be used. If PERIOD is given and RANGE is omitted, the
range is the complete line. If PERIOD and RANGE are both omitted, the previous line
and range are assumed. If RANGE is given, but PERIOD omitted, a new range is selected
from the previous line.

SYMM A logical flag. If set, subsequent calculations are made as if the mirror image had been
appended to the range.

SUPER An integer. Specifies the number of superperiods desired in the calculations. Quantities
like tunes, chromaticities, and the like which refer to the machine circumference will
be scaled with the value of SUPER (default: 1).

Example:

OCT: LINE=(...) ! one octant of the machine
USE,O0CT,SYMM, SUPER=4

Here the beam line 0CT is expanded. The effect is the same as if we had expanded the full machine as
follows:

TURN: LINE=(4#(0CT,-0CT))

However, MAD needs only to walk through one octant, instead of through the whole machine. If the
beam line is defined with a formal argument list, an actual argument list must be provided:

CELL(SF,SD): LINE=(...)
USE,PERIOD=CELL(SF1,SD1)

In this example, one super-period is used. The beam line CELL is expanded with the formal arguments
SF and SD replaced by SF1 and SD1 respectively. It is neither repeated nor made symmetric, since
both SUPER and SYMM have been omitted.

5.2 BEAM Command

Many commands in MAD require the setting of various quantities related to the beam in the machine.
These are entered by a BEAM command:

BEAM, PARTICLE=name,MASS=real,CHARGE=real, &
ENERGY=real,PC=real,GAMMA=real, &
EX=real ,EXN=real ,EY=real ,EYN=real,&
ET=real,SIGT=real,SIGE=real , &
KBUNCH=integer ,NPART=real ,BCURRENT=real, &
BUNCHED=logical ,RADIATE=1ogical




Warning: BEAM updates, i. e. it replaces attributes explicitely mentioned, but does not return to
default values for others! To reset to defaults, use RESBEAM (see below). The particle mass and charge
are defined by:

PARTICLE The name of particles in the machine. MAD knows the mass and the charge for the
following particles:

POSITRON The particles are positrons (default MASS=m,, CHARGE=1),
ELECTRON The particles are electrons (MASS=m,, CHARGE=-1),
PROTON The particles are protons (MASS=m,,, CHARGE=1),
ANTI-PROTON The particles are anti-protons (MASS=m,,, CHARGE=-1).

For other particle names one may enter:
MASS The particle mass in GeV.
CHARGE The particle charge expressed in elementary charges.

By default the total particle energy is 1 GeV. A different value can be defined by one of the following:

ENERGY The total energy per particle in GeV. If given, it must be greater then the particle
mass.

PC The momentum per particle in GeV/c. If given, it must be greater than zero.

GAMMA The ratio between total energy and rest energy of the particles ¥ = E/m,. If given,

it must be greater than one. If the mass is changed a new value for the energy should
be entered. Otherwise the energy remains unchanged, and the momentum and 5 are
recalculated. The emittances are defined by:

EX The horizontal emittance E, = 02/, (default: 1 m).

EY The vertical emittance E, = o /8, (default: 1 m).

ET The longitudinal emittance E; = o./(poc) - co; (default: 1 m). The emittances can be
replaced by the normalised emittances and the energy spread:

EXN The normalised horizontal emittance [m]: E,, = 48vE, (ignored if E, is given).

EYN The normalised vertical emittance [m]: E,, = 48yE, (ignored if E, is given).

SIGT The bunch length co; [m)].

SIGE The relative energy spread o, /poc [1].

Certain commands compute the synchrotron tune @, from the RF cavities. If @, # 0, the relative
energy spread o,/poc and the bunch length co; are

o,  |27Q.E, con — nCE;
poc nC ¢t 27Q,’

where C' is the machine circumference, and n = (1/4%) —(1/42). Finally, the BEAM command accepts

KBUNCH The number of particle bunches in the machine (default: 1).

NPART The number of particles per bunch (default: 0).



BCURRENT The bunch current (default: 0 A).
BUNCHED A logical flag. If set, the beam is treated as bunched whenever this makes sense.
RADIATE A logical flag. If set, synchrotron radiation is considered in all bipolar magnets.

The BEAM command changes only the parameters entered. The command

RESBEAM

resets all beam data to their defaults (listed in Table 5.2).

It is defined in the command dictionary

as
RESBEAM:BEAM, PARTICLE="POSITRON",ENERGY=1.0,EX=1.0,EY=1.0,ET=1.0,&
KBUNCH=1.0,NPART=0.0,BCURRENT=0.0,-BUNCHED,-RADIATE,-LIST
Table 5.2: Default Beam Data
attribute value unit attribute | value | unit
PARTICLE | POSITRON ENERGY 1 GeV
EX 1 rad m || EY 1 rad m
ET 1 GeV s || KBUNCH 1 1
NPART 0 1 BCURRENT 0 A
BUNCHED false RADIATE false
Examples:
BEAM, PARTICLE=ELECTRON,ENERGY=50,EX=1.E-6,EY=1.E-8,SIGE=1.E-3
BEAM, RADIATE
RESBEAM
BEAM, EX=2.E-5,EY=3.E-7,SIGE=4.E-3

The first command selects electrons, and sets energy and emittances. The second one turns on
synchrotron radiation. The last two select positrons (by default), set the energy to 1 GeV (default),
clear the synchrotron radiation flag, and set the emittances to the values entered.

The BEAM command stores all specified attributes in a data bank with the name BEAM. Some
program modules of MAD also store data into this bank. Real expressions may refer to data in the
BEAM bank using the notation

BEAM[attribute-name]

This notation refers to the value of attribute-name found in the BEAM bank before the command
containing the reference is executed. For example, after an EMIT command both emittances are stored
in the BEAM bank, but the vertical emittance EY may become zero. For subsequent tracking one may
set the new value of EY to 1/2 times the old value of EX by entering

BEAM,EY=0.5*BEAM [EX]



5.3 PRINT and SELECT Statements

Each position in the beam line carries several associated selection flags. They are initially cleared by
the USE command when the beam line is expanded. Output is selected by setting some of these flags
by one of the commands

PRINT,RANGE=range{,range},TYPE=type{,type},FULL,CLEAR
SELECT,FLAG=name,RANGE=range{,range},TYPE=type{,type},FULL,CLEAR

Both commands have the same attributes to select positions:

RANGE With a single command up to five selection points or ranges can be entered. If more
than five ranges are desired, several commands must be used. For definitions refer to
Section 4.7.

TYPE With a single command up to five TYPE names can be entered. All elements carrying

one of these type attributes will be selected. If more than five type names are desired,
several commands must be used.

FULL A logical flag. If set, all flags of a specified type are set, and no other processing of
attributes occurs.

CLEAR A logical flag. If set, all flags of a specified type are cleared before they are set in
selected positions.

The limits for the number of ranges or types may be changed by editing the command dictionary. The
PRINT command always affects the print flag for SURVEY (see Section 5.5), or TWISS (see Section 5.6).
In SELECT the flag type is chosen by the attribute FLAG: Three of its possible values affect action
commands:

TWISS A SELECT,TWISS statement is equivalent to PRINT. The two commands

PRINT,FULL
SELECT,FLAG=TWISS,FULL

have identical effect.
OPTICS Selects output positions for OPTICS (see Section 5.10).

TRACK Selects print positions for tracking (see Chapter 13). Care must be taken in using this
option, as it may generate a lot of output.

Four more values, intended for the programmer, specify debugging output:

FIRST Selects dumping of first-order transfer matrices for selected elements during closed orbit
search in TWISS.

SECOND Selects dumping of second-order TRANSPORT maps for selected elements during their
accumulation in TWISS.

REFER Selects dumping of first-order transfer matrices for selected elements during accumula-
tion for adjusting RF cavities.

LIE Selects dumping of Lie-algebraic maps during their accumulation.

PRINT and/or SELECT command(s) must be placed after the USE command, and before any action
command (e.g. TWISS) to be affected. Regardless of the setting of print flags, start and end points of
the computation range are always printed by NORMAL, SURVEY, and TWISS. Examples:



USE,OCT ! print at beginning and end only

PRINT,#35/37 ! print at positions number 35 to 37
SELECT ,TWISS,FULL ! set all print flags

PRINT,CLEAR ! clear all print flags

PRINT,OCT ! set all print flags
PRINT,CELL[3],CLEAR ! clear all flags,

! then set flags for all of third CELL

More examples can be found near the end of this chapter.

5.4 SPLIT Command, Request Interpolation for OPTICS

The OPTICS command writes one table line for each element selected by SELECT,0PTICS. The output
line contains the element parameters and the lattice functions for the element centre or its exit. The
command

SPLIT,NAME=name,FRACTION=real ,RANGE=range,range,TYPE=name,name,FULL,CLEAR

selects additional positions for output of the lattice functions only. The positions are given the name
NAME, and element parameters in those positions are output as zero. The elements are selected as
by SELECT, and FRACTION specifies a fraction of the length of the element where output is desired.
Any number of points can be selected in the same element; output occurs in order of increasing s.
Example:

SPLIT,NAME=B1,FRACTION=0.25,RANGE=B
SPLIT,NAME=B2,FRACTION=0.5,RANGE=B
SPLIT,NAME=B3,FRACTION=0.75,RANGE=B

Gives three lines for each B, at 1/4, 1/2, and 3/4 of its length respectively and assigns the names
B1,B2,B3 to the three positions.

5.5 SURVEY Statement

The SURVEY command computes the geometry of the machine:

SURVEY, XO=real,YO=real,ZO=real,&
THETAO=real ,PHIO=real ,PSIO=real,TAPE=file-name

It operates on the working beam line entered in the latest USE command (see Section 5.1). Its parameter
list specifies the initial position and orientation of the reference orbit in the global coordinate system
(X,Y, Z). Omitted attributes assume zero values. Valid attributes are:

X0 The initial X coordinate [m].
YO The initial Y coordinate [m].
Z0 The initial Z coordinate [m)].
THETAO The initial angle 6 [rad].
PHIO The initial angle ¢ [rad].

PSIO The initial angle ¢ [rad].



TAPE If TAPE=file-name appears MAD writes a full survey table on a disk file file-name.
Appendix A describes the format of the file written. Appendix B explains the format
for file names. TAPE alone is equivalent to TAPE="survey".

SURVEY prints one line for either end of the computation range and a summary. It also prints one line
for each element and for the entrance and exit of each beam line, if this position has been selected
by PRINT or by SELECT,FLAG=TWISS (see Section 5.3). The layout coordinates and angles have been
defined in Section 1.3. Example:

SURVEY, TAPE=LAYOUT

This example computes the machine layout with zero initial conditions and writes the results on a file
called LAYOUT.

5.6 TWISS Statement

The TWISS command causes computation of the linear lattice functions, and optionally of the chromatic
functions. It operates on the working beam line defined in the latest USE command (see Section 5.1).
TWISS prints one or two lines for either end of the computation range and a summary. It also prints
one or two lines for each element and for the entrance and exit of each beam line, if this position has
been selected by PRINT or by SELECT,FLAG=TWISS (see Section 5.3). The variables used have been
defined in Section 1.5. Three forms are distinguished for the TWISS command. In all three forms
initial values for the phase angles MUX and MUY are accepted. The relative energy error DELTAP may
be entered in one of the forms

DELTAP=real,real
DELTAP=initial:final:step

The first form lists several numbers, which may be general expressions, separated by commas. The
second form specifies an initial value, a final value, and a step, which must be constant expressions,
separated by colons. Mixtures of both forms are accepted. Examples:

DELTAP=0.001 ! a single value
DELTAP=0.001,0.005 ! two values
DELTAP=0.001:0.007:0.002 ! four values
DELTAP=0.001,0.005:0.03:0.005 ! seven values

If DELTAP is missing, MAD uses the value 0.0. Further attributes common to all three forms of the
TWISS statements are:

CHROM A logical flag. If set, MAD also computes the chromatic functions defined in [24].

COUPLE A logical flag. If set, MAD computes the coupled linear lattice functions as defined
in [14, 26]. In this case CHROM is ignored.

TAPE If TAPE=file-name appears MAD writes a full Twiss table on a disk file file-name.
Appendix A describes the format of the file written. Appendix B explains the format
for file names. TAPE alone is equivalent to TAPE="twiss".

SAVE If SAVE=table-name appears on the command, MAD creates a full Twiss table in
memory and gives it the name table-name (an identifier). Entering SAVE alone is
equivalent to SAVE=TWISS. This table includes linear lattice functions as well as the
chromatic functions for all positions.



TUNES If TUNES=table-name appears on the command, MAD creates a table of tunes and
chromaticities versus the selected values of DELTAP and gives it the name table-name
(an identifier). Entering TUNES alone is equivalent to TUNES=TUNES.

The tables are suited for plotting (see Chapter 10). They may be written on disk by the ARCHIVE
command (see Section 7.5).

5.6.1 Twiss Parameters for a Period

The simplest form of the TWISS command is

TWISS, DELTAP=real{,value},CHROM,COUPLE,&
TAPE=file-name,SAVE=table-name

It computes the periodic solution for the specified beam line for all values of DELTAP entered (or for
DELTAP = 0, if none is entered). Example:

USE,0CT,SYMM, SUPER=4
TWISS,DELTAP=0.001,CHROM,TAPE=0PTICS

This example computes the periodic solution for the linear lattice and chromatic functions for the
beam line 0CT, made symmetric and repeated in four superperiods. The DELTAP value used is 0.001.
Apart from saving computing time, it is equivalent to the command sequence

RING: LINE=(4#(0CT,-0CT))
USE,RING
TWISS,DELTAP=0.001,CHROM,TAPE=0PTICS

5.6.2 Initial Values for Twiss Parameters taken from a Periodic Line

It is often useful to track the lattice functions starting with the periodic solution for another beam
line. If this is desired the TWISS command takes the form

TWISS, DELTAP=real{,value},LINE=beam-line,&
MUX=real ,MUY=real&
TAPE=file-name,SAVE=table-name

No other attributes should appear in the command. For each value of DELTAP MAD first searches for
the periodic solution for the beam line mentioned in LINE=beam-1line. The result is used as an initial
condition for the lattice function tracking. In this form of the TWISS command the SYMM flag and the
value for SUPER are ignored. Example:

CELL: LINE=(...)

INSERT: LINE=(...)
USE, INSERT
TWISS,LINE=CELL,DELTAP=0.0:0.003:0.001,CHROM, TAPE

For four values of DELTAP the following happens: First MAD finds the periodic solution for the beam
line CELL. Then it uses this solution as initial conditions for tracking the lattice functions of the beam
line TWISS. The initial phases are not specified, they are set to zero. Qutput is also written on the file
TWISS.

If any of the beam lines was defined with formal arguments, actual arguments must be provided:

CELL(SF,SD): LINE=(...)

INSERT(X): LINE=(...)
USE, INSERT
TWISS,LINE=CELL(SF1,SD1)



5.6.3 Twiss Parameters with Numerical Initial Values

Initial values for linear lattice functions may also be numerical. Two equivalent methods are available
to specify initial values:

e In the TWISS command itself, as in

TWISS, BETX=real ,ALFX=real ,MUX=real , &
BETY=real ,ALFY=real ,MUY=real ,&
DX=real ,DPX=real ,DY=real ,DPY=real , &
X=real,PX=real,Y=real,DPY=real,&
WX=real ,PHIX=real,DMUX=real , &
WY=real ,PHIY=real,DMUY=real ,&
DDX=real ,DDY=real ,DDPX=real ,DDPY=real,&
TAPE=file-name,SAVE=table-name, &
DELTAP=real:real:real

¢ In a separate command, BETAO (see also Section 5.6.4):

INITIAL: BETAO,%&
BETX=real ,ALFX=real ,MUX=real , &
BETY=real ,ALFY=real ,MUY=real ,&
DX=real ,DPX=real ,DY=real ,DPY=real , &
X=real,PX=real,Y=real,PY=real,T=real,PT=real,&
WX=real ,PHIX=real,DMUX=real , &
WY=real ,PHIY=real,DMUY=real ,&
DDX=real ,DDY=real ,DDPX=real ,DDPY=real

TWISS, BETAO=INITIAL,TAPE=file-name,SAVE=table-name,&
DELTAP=real:real:real

In the second case the TWISS command may override some of the values set by BETAO. All variables
listed in Section 1.5.3 are permitted as input attributes, but BETX and BETY are required in either case.
The flags SYMM and COUPLE, and the value for SUPER are ignored in this use of the TWISS command. As
entered in this command, the initial conditions cannot depend on the quantity DELTAP, and can thus
be correct only for one such value. This should be remembered when using this form of the TWISS
command.

5.6.4 SAVEBETA Command, Save Lattice Parameters for Later Use

Sometimes it is useful to transfer computed lattice parameters to later commands. The command
sequence

USE, ...
SAVEBETA ,LABEL=name,PLACE=place
TWISS, ...

may help to do this. When reaching the place place during execution of TWISS MAD will create a
BETAO bank with the name name. This bank is filled with the values of all lattice parameters in place.
The SAVEBETA command has two attributes:

LABEL The name to be given to the created BETAO bank.

PLACE A position within the selected range of the working beam line.



Example 1:

USE, CELL

SAVEBETA ,LABEL=END,PLACE=#E
TWISS

USE, INSERT

TWISS,BETAO=END

This will first calculate the periodic solution of the line CELL, and then track lattice parameters through
INSERT, using all end conditions (including phases and orbit) in CELL to start.
Example 2:

USE, CELL

SAVEBETA ,LABEL=END,PLACE=#E

TWISS

USE, INSERT
TWISS,BETX=END[BETY] ,BETY=END [BETX]

This is similar to the first example, but the beta functions are interchanged (overwritten).

5.7 IBS Command, Intra-Beam Scattering

The IBS command takes an internal table (default: TWISS) generated by a previous TWISS,SAVE
command and prints out information about intra-beam scattering. This command uses the method
by Bjorken and Mtingwa [3, 9].

IBS,TABLE=table

This single attribute TABLE specifies the Twiss table to be used (default: TWISS). The IBS command
uses the same print flags as TWISS to select output positions. Example:

TWISS,SAVE=LATTICE
IBS,TABLE=LATTICE

5.8 Emittances, Eigenvectors, Normal Modes, Beam Envelope

5.8.1 Electron Beam Parameters

The command

EMIT,DELTAP=real

adjusts the RF frequencies such as to obtain the specified average energy error. More precisely,
the revolution frequency f, is determined for a fictitious particle with constant momentum error
dp/poc = 8, = DELTAP which travels along the design orbit. The RF frequencies are then set to hfj.

If the machine contains at least one RF cavity, and if synchrotron radiation is on (Section 5.2), the
EMIT command computes the equilibrium emittances and other electron beam parameters using the
method of A. Chao [7]. In this calculation the effects of quadrupoles, sextupoles, and octupoles along
the closed orbit is also considered. Thin multipoles are ignored, unless they have a fictitious length
LRAD different from zero.

If the machine contains no RF cavity, or if synchrotron radiation is off, it only computes the
parameters which are not related to radiation. Example:

RFC: RFCAVITY,HARMON...,VOLT=...
BEAM,ENERGY=100.0,RADIATE
EMIT,DELTAP=0.01



5.8.2 Representations of Beam with Full Coupling

The three commands

EIGEN,SAVE=name
ENVELOPE, SAVE=name,SIGMAO=name,LINE=1line
TWISS3,SAVE=name,LINE=1ine

track different representations of the beam in three degrees of freedom. If the ring contains RF cavities,
the command EMIT should be run before any of these commands in order to adjust the RF frequencies.
Their actions of are the following:

EIGEN

ENVELOPE

TWISS3

Tracks the eigenvectors for the three eigen-modes and prints the principal phase for
each of them. Example:

RFC: RFCAVITY,HARMON...,VOLT=...
BEAM,ENERGY=100.0,RADIATE
EMIT,DELTAP=0.01
EIGEN,SAVE=name

Tracks the beam envelope in a way similar to the TRANSPORT program. This uses
the eigenvectors and emittances for the three modes to determine the initial beam
envelope, and tracks this envelope along the ring. Example:

RFC: RFCAVITY,HARMON...,VOLT=...
BEAM,ENERGY=100.0,RADIATE
EMIT,DELTAP=0.01
ENVELOPE, SAVE=name,SIGMAO=name,LINE=1ine

Lists the coupled lattice functions defined in two papers by H. Mais [22] and G. Rip-
ken [25]. These are essentially the projections of the lattice functions for the eigen-
modes on the three planes. Example:

RFC: RFCAVITY,HARMON...,VOLT=...
BEAM,ENERGY=100.0,RADIATE
EMIT,DELTAP=0.01
TWISS3,SAVE=name,LINE=1ine

The attributes mean:

SAVE

SIGMAO

If this keyword is present, it requests saving of the computed functions in a table. It
may be followed by a name to be given to the table. If it appears without a value the
table has the same name as the command. If the SAVE keyword is omitted, no table
is generated. If the table is to be processed outside MAD, it must be written to disk
using the ARCHIVE command (Section 7.5). The positions appearing in the tables are
selected by means of the command

SELECT,0PTICS,RANGE=. ..

in a way similar to the OPTICS command.

May contain the name of a SIGMAO block, to be used as the initial beam envelope in
ENVELOPE.



LINE May specify a beam line whose periodic solution should be taken for initial condition
in ENVELOPE or TWISS3.

For all three commands printing and selection for saving is controlled by the PRINT command (5.3).
A SIGMAO block can be generated by two means. First, it may be entered like any definition:

name:3IGMAO, X,PX,Y,PY,T,PT,DX,DPX,DY,DPY,DT,DPT,&
SIGX,R21,R31,R41,R51,R61,SIGPX,R32,&
R42,R52,R62,SIGY,R43,R53,R63,SIGPY,&
R54,R64,SIGT,R65,SIGPT

The first group of six values defines the initial orbit. For a static machine (constant energy) the second
group of six values defines the initial dispersion. The values SIGxx are the standard deviations and
the Rij the correlations defining the beam ellipsoid in TRANSPORT sense.

A SIGMAO block can also be generated and used as follows:

USE,RING

SAVESIGMA,LABEL=SIGMAHERE,PLACE=HERE

EMIT ! required only if RF cavities are present
ENVELOPE

USE,RING,RANGE=HERE/THERE
ENVELOPE, STGMAO=SIGMAHERE

The first envelope command computes the periodic beam envelope for the line RING, and fills in the
SIGMAO-block with the name SIGMAHERE. The second ENVELOPE uses the values in position HERE to
track the envelope from HERE to THERE.

5.9 DYNAMIC and STATIC, Lie-Algebraic Analysis

The two commands

DYNAMIC, DELTAP=real,MAP,ORBIT,A,N,&
RESONANCE ,EXPONENT ,HAMILTON, INVARTANT

STATIC, DELTAP=real,MAP,ORBIT,FIXED,T,A,N,&
RESONANCE ,EXPONENT ,HAMILTON ,BETATRON, &
NONLINEAR,CONJUGATE, INVARIANT

both evaluate the fourth-order Lie transformation for one turn and print the eigenvectors and lattice
parameters at the end of the system. Both have various options to print selected maps and functions.
The differences are the following:

DYNAMIC The RF cavities are adjusted as for the command NORMAL. The transfer map is inter-
preted as dynamic, i.e. there is synchrotron motion with an average momentum error
DELTAP.

STATIC The program assumes that there are no cavities, and it interprets the transfer map as

static, i.e. having constant momentum error DELTAP.
Both commands have the following logical flags:

MAP Print the original map to be analysed.



ORBIT Print the map around the closed orbit.

A Print the conjugating map (the transformation from the closed orbit to normal form).
N Print the normal form map.

RESONANCE  Print the resonance coefficients left in the normal form.

EXPONENT Print the exponent for the normal form.

HAMILTON Print the Hamiltonian for the normal form.

INVARIANT  Print the linear invariants.

The DYNAMIC command adjusts the RF frequencies according to the revolution frequencies. It uses
the following attributes for this purpose:

RFCAVITY The name of a class of cavities whose phase lag is to be adjusted to make the time lag
of the closed orbit approximately zero.

DELTAP The average momentum error Ap/poc for the closed orbit.

The STATIC command also finds the fixed point of the map, that is the variation of the closed orbit
with momentum. It has the following additional attributes:

DELTAP The constant momentum error Ap/poc for the closed orbit.
FIXED Print the map about the fixed point.
T Print the transformation to the fixed point.

BETATRON Print the betatron map.
NONLINEAR  Print the non-linear factor of the betatron map.

CONJUGATE  Print the map conjugate to the betatron factor.

5.10 OPTICS Command

Control system applications often require tables with arbitrary selections of element data and/or
lattice functions. Such tables can be generated by the command

OPTICS, BETX=real,ALFX=real,MUX=real, &
BETY=real ,ALFY=real ,MUY=real ,&
DX=real ,DPX=real ,DY=real,DPY=real , &
X=real,PX=real,Y=real,PY=real,T=real,PT=real&
WX=real ,PHIX=real,DMUX=real, &
WY=real ,PHIY=real,DMUY=real ,&
DDX=real ,DDY=real ,DDPX=real ,DDPY=real,&
LINE=beam-line,BETAO=name,CENTRE,&
FILENAME=file-name,DELTAP=real:real:real,&
COLUMNS=name{ ,name}

It first creates a table in memory. It then writes it on a disk file in coded TFS format (see Appendix C).
Initial conditions for the optical functions are specified like for the TWISS command. They are explained
in Sections 1.5 and 5.6. Further attributes are:



CENTRE

FILENAME

COLUMNS

Example:

!
B:
QF:
QD:
SF:
SD:

Normally output occurs at the exit of each selected element. If the CENTRE flag is on,
output occurs at the centre of each selected element;

The output is written on the file file-name (default: optics). Note that the resulting

table is written on this file and erased from the computer’s memory. In order to plot
it, it must be read back by an RETRIEVE command.

Up to 50 table columns may be selected by name for output. All optical and chromatic
functions listed in Sections 1.5.1, 1.5.3, and 1.5.4 are accepted. Further possibilities

are:

NAME
CLASS
KEYWORD
TYPE

S

DP

L
RADLOSS
KOL

KnL

VOLT
LAG
FREQ
HARMON
TILT
KS
HKICK
VKICK
E1

E2

H1

H2
EFIELD

The element name.

The smallest class containing the element as an object.
The element keyword.

The TYPE attribute of the element.

The longitudinal position.

The current AE/p,. It is not called DELTAP to avoid conflicts with the
command attribute of this name which selects a single value for the
calculation.

The element length.
The systematic part of the relative radiation loss for this element.
The dipole component of this element (excluding kicks).

The integrated multipole component. The value of n specifies the mul-
tipole with 2n 4 2 poles, and 0 < n < 9.

The cavity voltage.

The RF frequency lag.

The RF frequency.

The RF harmonic number.

The roll angle of the element, zero for multipoles.
The integrated solenoid strength.

The horizontal corrector deflection.

The vertical corrector deflection.

The entrance pole face angle for dipoles.
The exit pole face angle for dipoles.

The entrance pole face curvature for dipoles.
The exit pole face curvature for dipoles.

The electrostatic field for a separator.

Define element classes for a simple cell:
SBEND,L=35.09, ANGLE = 0.011306116
QUADRUPOLE,L=1.6,K1=-0.02268553
QUADRUPOLE,L=1.6,K1=0.022683642
SEXTUPOLE,L=0.4,K2=-0.13129
SEXTUPOLE,L=0.76,K2=0.26328



! Define the cell as a sequence:
CELL: SEQUENCE

B1:
SF1:
QF1:
B2:
SD1:
QD1:
ENDM:

B,
SF,
QF,
B,
SD,
QD,

AT=19.115

AT=37.42

AT=38.70

AT=58.255,ANGLE=B1 [ANGLE]

AT=76.74

AT=78.20

MARKER, AT=79.0

ENDSEQUENCE USE,CELL

SELECT,0PTICS,SBEND,QUAD,SEXT
OPTICS,FILENAME="cell.optics.f" ,EXIT,COLUMN=NAME,S,BETX,BETY

The resulting table file is listed in Table 5.3.

GAMTR
ALFA
XIY
XIX

QY

QX
CIRCUM
DELTA
COMMENT
ORIGIN
DATE
TIME
NAME
\) %16s
B1

SF1
QF1

B2

SD1
QD1

*x* © 0 0 © 0 B0 B B0 B 6 6 6

Table 5.3: An OPTICS Output Table Example

Wt
Wt
Wt
Wt
Wt
Wt
Wt
Wt
%20s
%24s
%08s
%08s

Wt

36.
37.
39.

75

T7.
79.

64.3336
0.241615E-03

-.455678

2.05279
0.250049

0.249961

79.0000

0.000000E+00

"DATA FOR TEST CELL"

"MAD 8.01 IBM - VM/CMS"

"19/06/89"
"09.47.40"

BETX BETY

hE 54
6600 24.8427 126.380
6200 23.8830 130.925
5000 23.6209 132.268
.8000 124.709 25.2153
1200 130.933 23.8718
0000 132.277 23.6098



5.11 Examples for SPLIT and OPTICS Commands

The following is an excerpt of the LEP description:

! Bending magnet pairs:
! The definitions take into account the different magnetic length
! for the inner and outer pairs of a group of six.

B2: RBEND, L=11.55,ANGLE=KMB2,K1=KQB,K2=KSB, &
E1=-.25%B2[ANGLE] ,E2=-.25%B2[ANGLE]

B20UT: B2, ANGLE=1.00055745184472*KMB2, &
E1=-.25%B20UT [ANGLE] ,E2=-.25*B20UT [ANGLE]

B2MID: B2, ANGLE=1.00111490368947*KMB2, &
E1=-.25%B2MID[ANGLE] ,E2=-.25*B2MID [ANGLE]

! Quadrupoles:

MQ: QUADRUPOLE,L=1.6 ! standard quadrupoles =

QD: MQ, K1=KQD ! cell quadrupoles, defocussing

QF: MQ, K1=KQF !cell quadrupoles, focussing

! Sextupoles:

MSF: SEXTUPOLE, L=0.40 ! F sextupoles

MSD: SEXTUPOLE, L=0.76 ! D sextupoles

SF1.2: MSF, K2=KSF1.2 ! F family 1, circuit 2

SF2.2: MSF, K2=KSF2.2 ! F family 2, circuit 2

SF3.2: MSF, K2=KSF3.2 ! F family 3, circuit 2

SD1.2: MSD, K2=KSD1.2 ! D family 1, circuit 2

SD2.2: MSD, K2=KSD2.2 ! D family 2, circuit 2

SD3.2: MSD, K2=KSD3.2 ! D family 3, circuit 2

! Orbit correctors and monitors:

CH: HKICK, 1L=0.4 ! Horizontal orbit correctors

CvV: VKICK, 1L=0.4 ! Vertical orbit correctors

MHV: MONITOR, L=0 ! Orbit position monitors

LEP:SEQUENCE

QF23.R1: QF, AT=639.180037

SF2.QF23.R1: SF2.2, AT=640.460037

B2L.QF23.R1: B20UT, AT=647.257037

B2M.QD24.R1: B2MID, AT=659.147037

B2R.(QD24.R1: B20UT, AT=671.037037

CV.QD24.R1: CvV, AT=677.392037, KICK=KCV24.R1

PU.QD24.R1: MHV, AT=677.712037

QD24 .R1: QD, AT=678.680037

SD2.QD24.R1: SD2.2, AT=680.140037

B2L.QD24.R1: B20UT, AT=686.757037

B2M.QF25.R1: B2MID, AT=698.647037

B2R.QF25.R1: B20UT, AT=710.537037

CH.QF25.R1: CH, AT=716.942037, KICK=KCH25.R1

QF25.R1: QF, AT=718.180037

SF1.QF25.R1: SF1.2, AT=719.460037

B2L.QF25.R1: B20UT, AT=726.257037

B2M.QD26.R1: B2MID, AT=738.147037

B2R.(QD26.R1: B20UT, AT=750.037037



CV.QD26.R1:
PU.QD26.R1:
QD26.R1:

SD1.QD26.R1:
B2L.QD26.R1:
B2M.QF27.R1:
B2R.QF27.R1:

QF27.R1:

SF3.QF27.R1:
B2L.QF27.R1:
B2M.(QD28 .R1:
B2R.(QD28.R1:

PU.QD28.R1:
QD28.R1:

SD3.QD28.R1:
B2L.QD28.R1:
B2M.QF29.R1:
B2R.QF29.R1:

CH.QF29.R1:

ENDSEQUENCE

Ccv,
MHV,
QD,
SD1.2,
B20UT,
B2MID,
B20UT,
QF,
SF3.2,
B20UT,
B2MID,
B20UT,
MHV,
QD,
SD3.2,
B20UT,
B2MID,
B20UT,
CH,

AT=756.
AT=756.
AT=757.
AT=759.
AT=765.
AT=T77.
AT=789.
AT=797.
AT=798.
AT=805.
AT=817.
AT=829.
AT=835.
AT=836.
AT=838.
AT=844.
AT=856.
AT=868.
AT=874.

392037, KICK=KCV26.R1
712037
680037
140037
757037
647037
537037
180037
460037
257037
147037
037037
712037
680037
140037
757037
647037
537037
942037, KICK=KCH29.R1

In the above structure it is easy to select many sets of observation points:

e Print at all F sextupoles:

PRINT,MSF

e Split all quadrupoles at 1/3 of their length for OPTICS command:

SPLIT,QUADRUPOLE,FACTOR=1/3

¢ Misalign two quadrupole QF25.R1 and (QD26.R1:

EALIGN,QF25.R1,QD26.R1,DX=0.001*GAUSS () ,DY=0.0005*GAUSS ()

¢ Print first-order matrices for elements B2L.QD24.R1 through CV.QD26.R1:

SELECT,FIRST,B2L.QD24.R1[1]/CV.QD24.R1[1]

Print lattice functions at all F-sextupoles of the first family, if connected to the second circuit:

PRINT,SF1.2



Chapter 6. Calculation of Beam Parameters

Table 6.1: Electron Beam Parameter Command

Name | Function Section

BMPM | Calculate and print beam parameters | 6.2

6.1 Introduction

The program BEAMPARAM (see [17]) which served as the basis for this module, is valid for e™-e~ storage
rings only. Inside MAD, however, this new module will use the correct mass and radius of the proton
if this is chosen by the user. This means that all formulae will remain correct even in the case of
the proton. However, it has not been checked whether some of them have been derived under the

assumption that the particles are electrons. In the text, only et-e~ storage rings are mentioned.

The utility of the BMPM command is achieved at the price of a few simplifying assumptions and
approximations concerning the accelerator lattice. Although these conditions are quite well satisfied
by many et-e~ storage rings, the user does need to be aware of them. Accordingly we list the most

important among them below:

Flat machine If any element has a non-zero TILT parameter then the command will abort. This
excludes, in particular, skew quadrupoles and vertical bends, hence the vertical dispersion will
be zero everywhere. Combined-function dipoles are not accepted.

Emittance coupling Although the previous assumption implies that the betatron coupling vanishes
so that the vertical emittance will be determined by the small transverse components of the
photon recoil, the vertical emittance is in fact calculated using a non-zero betatron coupling
parameter k (KAPPA). This factor is defined by the equation E,/E, = k*(J,/J,).

Damping partition number variation In reality, this is achieved by small shifts of the equilibrium
momentum which place the beam on a slightly different orbit. BMPM computes the values of the
damping partition numbers on the central orbit with Eqn. 6.1-Eqn. 6.1. These are later used
in the calculations of damping times, emittances and energy spread. In reality, their values on
other (off-momentum) orbits involve further synchrotron radiation integrals. However, changes
in the damping partition number are effected by artificially changing the value of the synchrotron
integral I,. For convenience, it is the value of the ratio I,/I, that is specified in the input rather
than I, itself. It is the user’s responsibility to ensure that the damping partition number variation
brought about in this way does not violate the aperture constraints of his machine.

Horizontal J, = 1 — I,/I,
Vertical J, =1

Energy J. 2+ 1,/1,

Luminosity The luminosity value computed assumes that the beam sizes have their natural values,
and does not allow for any beam-beam blow-up.

6.2 BMPM Command

The BMPM command performs the calculation of beam parameters for an et-e~ storage ring according
to the parameters and options specified below. It requires the prior execution of the commands BEAM
and TWISS with SAVE option. This command requires the beam energy to be set, and the machine
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to contain an RF cavity whose shunt impedance and filling time are specified. It does not handle
combined function dipoles.

BMPM, NINT=integer,DELQ=real,TAUQ=real,BUCKET=real,&

KAPPA=real,I4I2=real ,EXDATA=real ,FX=real ,FY=real,&
KHM=real ,SYNRAD=logical,CLORB=logical,&
TOUSCH=logical,SINGLE=logical ,EVARY=logical,&
MIDARC=logical,INTERACT=range,RANGE=range

NINT
DELQ
TAUQ

BUCKET

KAPPA
I412
EXDATA
FX

FY

KHM
SYNRAD
CLORB
TOUSCH
SINGLE

EVARY

MIDARC

INTERACT

RANGE

Example:

XXX:
BEAM,

TWISS,

Number of crossing points (default: twice the number of bunches).
Maximum permissible beam-beam tune shift per crossing (default: 0.06).
Quantum lifetime (default: 600 Minutes).

oy/0., where o3 is the bucket half-height, and o, the relative r.m.s. energy spread

(default: 0).

Coupling factor between horizontal and vertical betatron oscillations (default: 0).
Ratio of the two synchrotron integrals I, and I, (default: 0).
Horizontal emittance E, (default: 0) in pm.

Horizontal multiplication factor (default: 10).

Vertical multiplication factor (default: 10).

Higher mode loss factor (default: 0) in V/pC.

Performs synchrotron radiation calculations (default: F').
Performs closed orbit calculations (default: F).

Performs Touschek lifetime calculations (default: F).

True for one beam, false for two beams (default: F).

Vary energy between current nominal energy and twice its value until the calculated
power is equal to the power given (default: F).

If MIDARC=T, then the e~ and e™ are assumed to be interleaved with equal spacing;
otherwise they are assumed to be coincident. The small difference in arrival times which
occurs in practice is neglected. For single beams, the MIDARC parameter is irrelevant

(default: F).

Position (name, number, etc.) of the interaction element. If a range is entered, the first
element of the range is used (default: #E, see Section 4.7).

Element range for which a detailed table is printed (default: no range, see Section 4.7).

RFCAVITY,SHUNT=...,TFILL=...
ENERGY=100.0
SAVE BMPM



6.3 Output of overall machine parameters

6.3.1 Synchrotron integrals

This table gives the synchrotron integrals I, to I5 as defined in reference [18]. Further integrals, I,
and Ig,, defined by M.Bassetti, as well as I3 are also calculated and printed.

6.3.2 Machine parameters

This table contains the tunes @, @y, the betatron functions 3; and 3; and the dispersions D and D},
at the crossing point. Since the program does not handle vertical dispersion, D} is set to zero. Also
printed are the momentum compaction «, the machine circumference C, the revolution time %y, the
damping partition numbers J,, J,, J., the derivative of J, with respect to dE/E, then dE/E itself,
and finally the frequency change dfgr.

6.3.3 Beam parameters and luminosities

This table gives the beam energy, the coupling, the larger of the horizontal and vertical tune shifts AQ,
the energy loss per turn due to synchrotron radiation U,, the r.m.s. energy spread o., the magnetic
rigidity Bp, and the damping times for the horizontal and vertical betatron oscillations, 7, and 7,
and for the synchrotron oscillations 7.

o, and o, are the r.m.s. beam radii at the crossing point, defined by INTERACT:

® 0., and g, are the uncoupled betatron values.
e o, and o, are the values due to coupled betatron oscillations.

e o,r and o, are the total values, including coupled betatron oscillations and energy oscillations.

Convention for the coupling « : If a non-zero value of the coupling parameter « is read in, it is
used for calculating o}, 05, 0.7, 0y, Ezc, By etc. and never gets changed. In the output « is
labelled (D)KAPPA.

If the input value x = 0, BMPM computes « so that the beam-beam tune shifts AQ, and AQ,
vary with the current as shown schematically in Figure 6.1. For currents at the beam-beam limit
AQ and above, the coupling « is adjusted so that AQ, = AQ, by having O';T/O';T = pB /ﬁ;
(This is usually called optimum coupling.) For currents below the beam-beam limit AQ, the

coupling « is adjusted so that AQ, < AQ but AQ, = AQ.

Beam current Three different methods are foreseen for calculating the circulating current I, the
stored number of particles IV in each beam, and the luminosity L.

1. If neither a value for the current I,, nor a value for the RF generator power P, is given in
the data, i.e. I,, = P, = 0, then the currents I, and I, are calculated so that AQ, = AQ
and AQ, = AQ respectively. These currents are then used to calculate the stored number of
particles IV, and N, and the luminosities L, and L,. For optimum coupling, I, = I,, N, = N,
and L, = L,. This option is typical for storage rings in the energy range where the luminosity
is limited by the beam-beam tune shift.

2. If a value for the current I, is specified in the data, i.e. I, # 0, then I, = I, = I, and these
values are used to calculate the beam-beam tune shifts AQ, and AQ,, N, and N,(= N,) and
the luminosities L, and L,(= L,). This option typically applies to storage rings in the energy
range where the current is limited, and to synchrotrons. The AQ printed is the larger of AQ,
and AQ,, it may well exceed the beam-beam limit.
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Figure 6.1: Variation of the beam-beam tune shifts AQ, and AQ, with the current obtained by
varying the coupling &

3. If an RF generator power P, # 0 is specified in the data, the current I, is adjusted so that the
RF generator power necessary to sustain it is equal to the input value P,. The current I, = I,
is then used to calculate AQ, and AQ,, N, and N,(= N,), L, and L,(= L,).

In the output, the input parameters, AQ,I,, P,, are labelled (D) and the calculated parame-
ters (C).

The beam-beam bremsstrahlung lifetime 73, is calculated according to [30], using the bucket height
obtained in the calculation of the RF parameters, and assuming that there are N;,,; identical crossings.
For machines with different crossings the calculated 7, must be scaled appropriately.

6.3.4 RF related parameters

The RF parameter calculation is done in two different ways, depending on the value of the RF generator
power in the data. If P, = 0 there are two possible values for the current I,: either P, = I,, = 0, in
which case a value for I, is calculated, or P, = 0 and I,, # 0 in which case I, = I,,. Once one has a
value for I, then a single-pass calculation is sufficient to obtain all the output parameters described
below. If P, # 0, the current I, is adjusted so that the input value and the calculated value of P,
agree, before the rest of the output parameters is calculated.

The output contains the harmonic number frr/fo, the peak RF voltage Vzp, the stable phase
angle ¢,, the synchrotron tune ¢, and the synchrotron frequency f,, the half-height of the bucket
oy in units of 0., the r.m.s. bunch length o,, the quantum lifetime 7, and the Touschek lifetime 7/,
calculated according to [27, 8, 28].

If v, /0, > 100 then we use an approximation which is good to within 2% [28], otherwise we use
the exact formula. Since the approximation involves an integration along the orbit, it is somewhat
time-consuming. The exact formula will take even longer as a double integral is involved. So, it is
preferable not to ask for the Touschek lifetime unless it is really needed.

Convention for RF frequency frr: The harmonic number frr/f, is computed such that it is the
multiple of k; which gives an RF frequency frr closest to the input value.

Convention for RF voltage Vipr: The RF voltage Vrr may be obtained in one of three ways.
Firstly it may be read in as data as an attribute of the RF cavities. Secondly it may be



computed such that an energy loss (Us + knm@s) is compensated, at the specified quantum
lifetime 7,, where (), is the bunch charge and ks, is the higher mode loss factor. Finally it can
be calculated from the condition that the bucket half height o} is BUCKET times the r.m.s. energy
spread o,

The computation of the RF generator power P, involves a complete beam-loading calculation
according to [29]. The input data required are: the length of the active RF system L. (sum of physical
lengths of all cavities), its shunt impedance per unit length Z, and its unloaded filling time T;; (all
attributes of the RF cavities). The beam is described by parameters which are already known—such
as the current I, and the number of bunches k,—and by the logical variables SINGLE and MIDARC.
If SINGLE=T, then the calculation is done for a single beam circulating in the machine; otherwise the
calculation is done for two counter-rotating beams of e~ and e'. The arrival times of the e~ and e
bunches at the RF cavities are controlled by the variable MIDARC. If MIDARC=T, then the e~ and e* are
assumed to be interleaved with equal spacing; otherwise they are assumed to be coincident. The small
differences in arrival times which occurs in practice [4] is neglected. For single beams, the MIDARC
parameter is irrelevant.

The two cavity attributes BETRF and LAG, represent the RF coupling parameter gz and the cavity
tuning angle ¥ gr respectively. If both Srr and Y¥rr are zero, BUPM will adjust them such that the RF
generator power, P,, is minimised. If Bzp is different from zero, 1 gr will be varied such that the RF
generator power P, is minimised. If both are different from zero, no such optimisation takes place.

The output of the beam loading calculation consists of Sgr, ¥rr, T, and BUCKET, all preceded by
(C) or (D) accordingly.

6.4 Evaluation of the beam size

If a valid element range is given (RANGE), a table of beam sizes is printed for the elements in the range.
For each element, it gives the number, name, 5, 7', 8,, By, ¢, &y, F,0,, and F,o0,, all taken at the
entrance of the element. The values of F, and F, are input data (FX and FY).

Convention for beam radii: The horizontal beam radius o, is calculated for an uncoupled beam
using the emittance F,, the vertical one for a fully coupled beam using the emittance E,q/2.

Because of this convention, the actual beam sizes for all amounts of coupling should be smaller
than or equal to the figures printed. It may be found useful to split elements with strong variations
of 8, and By, e.g. low-3 quadrupoles, into several pieces in the data in order to get better results for
the beam size variation in these elements.

6.5 Synchrotron radiation, Calculated for One Beam

If in addition to a valid range, SYNRAD=T, the table of beam sizes will contain in addition for each
element the horizontal beam divergence o,/, the vertical beam divergence o, the bending radius
p, the critical photon energy E., the synchrotron radiation power/metre, and the number of pho-
tons/m/s/keV at the critical energy.

Convention for divergences: o, is calculated for an uncoupled beam; o, is calculated for a fully
coupled beam; p, E. etc. are only calculated for bending magnets (¢ # 0) or quadrupoles
(K1 # 0). For all these calculations, combined function magnets are not permitted (K;¢ # 0).
In quadrupoles, p, E. etc., as defined in [20], are calculated for a fully coupled beam at a distance
o from the quadrupole axis.

Again, it may be found useful to split elements with strong variations of 3, and 3,, e.g. low-3
quadrupoles, into several pieces in the data in order to obtain better results for the variation of the
synchrotron radiation parameters in those elements.



6.6 Closed orbit calculations

The sensitivity of the closed orbit to alignment errors of the quadrupoles, and excitation errors and tilts
of the bending magnets can be expressed by integrals around the machine circumference of appropriate
powers of the amplitude functions 3, and 3,, and the focussing parameter K;.

If in addition to a valid range, CLORB=T, the table of beam sizes will contain in addition for
each element the amplification factors P, and P, for all quadrupoles and bending magnets. For
quadrupoles, P, and P, are amplification factors for horizontal and vertical misalignments. They are
the ratio between the closed orbit distortion in that element, which will not be exceeded in 98% of all
machines, to the r.m.s. displacement of the quadrupoles, assumed to be the same for all quadrupoles.
For bending magnets, P, is the 98% ratio between closed orbit distortions in metres and relative r.m.s.
magnet errors AB/B, and similarly P, is the ratio between closed orbit distortions in metres and the
r.m.s. tilt of the magnets.



Chapter 7. File and Pool Handling

Table 7.1: File Handling Commands

Name Meaning Section
ASSIGN Assign standard streams to files 7.2
SAVE Save machine structure in MAD format 7.3
CALL Read alternate input file 7.3
RETURN Return to calling file 7.3
EXCITE Read element excitations 7.4
INCREMENT | Increment element excitations 7.4
ARCHIVE Archive an internal table 7.5
RETRIEVE Retrieve an internal table 7.5
PACKMEMORY | Garbage removal 7.6
STATUS Show status of files 7.7
POOLDUMP Dump data pool to disk 7.8
POOLLOAD Reload data pool from disk 7.8

7.1 I/0 Data Sets (Files)

In MAD most data streams are referred to by their name and opened by FORTRAN OPEN statements
with a file name. Only the standard input and output are referred to by number and must be assigned
to devices by external commands (job control language, execute files or the like). The standard data
streams used in MAD are listed in Table 7.2. The format of file names is described in Appendix B for
various computer operating systems.

Table 7.2: Standard Files Used by MAD

Purpose unit | file name
dict

Command dictionary input 4
Normal input 5
Input lines and error messages | 6
8
8

Plot output (GKS metafile) mad.metafile

Plot output (HIGZ metafile) mad.ps
Normal output 14 print
Dynamic tables 15 table

7.2 ASSIGN Statement

The ASSIGN statement is able to reroute three of the standard I/O streams to different files:

ASSIGN,DATA=file-name,ECHO=file-name,PRINT=file-name

For each stream=file-name clause, it connects the stream stream to the file file-name. The special
file name TERMINAL denotes the interactive terminal. Example:

ASSIGN,ECHO=PRINT ,PRINT=TERMINAL

This example sends the ECHO stream to the standard PRINT file, and the PRINT stream to the terminal.
Standard connections can be reestablished by
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ASSIGN,ECHO=ECHO,DATA=DATA,PRINT=PRINT

7.3 SAVE, CALL, and RETURN Statements

The SAVE command

SAVE, FILENAME=string, PATTERN=string

causes all beam element, beam line, and parameter definitions to be written on the named file. The
output format is similar to the normal input format. The file may be read again in the same run. The
attributes are

FILENAME The name of the file to be written (default: save).
PATTERN A “wild-card” pattern permitting selective saving

The default is to save all definitions; this is equivalent to the PATTERN=".*". For definition of the
pattern refer to Section 1.7. Examples:

SAVE,FILENAME="structure"
SAVE,FILENAME="quadrupoles" ,PATTERN="Q.."
SAVE,FILENAME="strengths" ,PATTERN="K.*QD.*R1"

The first command saves all definitions onto file structure. The second command saves all definitions
whose names begin with the letter Q and have exactly three characters onto file quadrupoles. The
third command saves all definitions whose names begin with K, contain QD, and end with .R1. The
two occurrences of . x replace arbitrary strings of any length (including zero); and \ . replaces a literal
period character.

The command The CALL command

CALL, FILENAME=string

serves to read an alternate input file. Input continues on that file until a RETURN statement or end of
file is encountered. The attribute is

FILENAME The name of the file to be read (default: save).
Example:
CALL, FILENAME=STRUCT

reads back the file written by the above SAVE example.
The command RETURN

RETURN

on an alternate input file causes reading to resume with the next line following the CALL statement on
the standard input file. Both CALL and RETURN statements cannot be followed by any other information
(except comments) on the same line. The CALL/RETURN structure can be nested up to a level 10; i.e.
an alternate input file can issue another CALL. Circular calls are forbidden. The following example
shows a possible sequence of input:



contents of contents of contents of

main input file file "STRUCT" file "ACTION"
TITLE, "page header"

any commands

CALL, FILENAME=STRUCT

beam element definitions
beam line definitions
parameter definitions
RETURN

more definitions
CALL, FILENAME=ACTION

action commands
RETURN

more action commands

SAVE, FILENAME=STRUCT
STOP

7.4 Element Excitations

Two commands, EXCITE and INCREMENT allow to enter complete lists of element excitations:

EXCITE, FILENAME=file-name,NAME=name,VALUE=name
INCREMENT, FILENAME=file-name,NAME=name,VALUE=name

Both have the same attributes:
FILENAME The name of a TFS file (see Appendix C) to be read.
NAME The name of the table column containing the strength names.

VALUE The name of the table column containing the strength values (for EXCITE) or increments
(for INCREMENT).

The names in the NAME column must refer to global MAD parameters. If a name is not known, MAD
creates a new parameter of this name. The TFS table may contain other columns, but they will be
ignored.

7.5 Archiving and Retrieving Dynamic Tables

7.5.1 ARCHIVE Command
ARCHIVE writes a dynamic table on a formatted TFS file (see Appendix C):

ARCHIVE,TABLE=name,FILENAME=file-name

The command has two attributes:

TABLE The name of a previously created table to be written. It may reside in memory or
(partly) in bulk storage.



FILENAME The name of the file to be written (default: twiss).
Example:

ARCHIVE,TABLE=TWISS ,FILENAME=LEP.TWISS.F

7.5.2 RETRIEVE Command

RETRIEVE reads a formatted TFS file (see Appendix C) into memory and creates a dynamic table.

RETRIEVE,TABLE=name,FILENAME=file-name

The command has two attributes:

TABLE The name of a dynamic table to be created. It need not be the same as when the table
was written. If there is already a table with this name, it is deleted before reading a
new copy.

FILENAME The name of the file to be read (default: twiss).
Example:
RETRIEVE,TABLE=TWISS1,FILENAME=LEP.TWISS.F
reads file written by the ARCHIVE example and creates a new table TWISS1.

7.6 PACKMEMORY Command, Garbage Removal

The MAD memory management routines, based on the ZEBRA system, reclaim unused memory space
automatically. One may however force garbage collection at any time by the PACKMEMORY command

PACKMEMORY

7.7 STATUS

The STATUS command

STATUS

causes MAD to list all known files on the message stream. These include all files which were referred
to in the current program run.

7.8 Dumping and Reloading the Memory Pool

The POOLDUMP command

POOLDUMP,FILENAME=file-name

dumps the complete memory pool on the named disk file. Its attribute is:
FILENAME The name of the file to receive the dump (default: pooldump).
Memory dumped by POOLDUMP can be reloaded in a subsequent MAD run by a POOLLOAD command:

POOLLOAD,FILENAME=file-name

This may save considerable time compared to regenerating a complex data structure from input. Its
attribute is:

FILENAME The name of the file to reload (default: pooldump).



Chapter 8. Error Definitions

Table 8.1: Error Definition Commands

Name | Function Section
EALIGN | Specify misalignment(s) 8.1
EFCOMP | Specify field error(s) 8.2
EFIELD | Specify field error(s) 8.2
EOPT Specify error options 8.3
EPRINT | List errors assigned to elements 8.4

This chapter describes the commands which provide error assignment and output of errors assigned
to elements.! It is possible to assign alignment errors and field errors to single beam elements or to
ranges of beam elements. Errors can be specified both with a constant or random values. Error
definitions consist of four types of statements listed in Table 8.1. They may be entered after having
selected a beam line by means of a USE command (see Section 5.1).

8.1 Misalignment Definitions

Alignment errors are defined by the EALIGN command. The misalignments refer to the local MAD
reference system for a perfectly aligned machine (see Section 1.1). Possible misalignments are dis-
placements along the three coordinate axes, and rotation about the coordinate axes. Alignment errors
can be assigned to all beam elements except drift spaces. The effect of misalignments is treated in
a linear approximation. Position monitors can be given read errors in both horizontal and vertical
planes. Monitor read errors (MREX and MREY) are ignored for all other elements. Each new EALIGN
statement replaces the misalignment errors for all elements in its range.
Alignment error values are defined by the statement

EALIGN, RANGE=range,TYPE=name,DX=real,DY=real,DS=real,&
DPHI=real ,DTHETA=real ,DPSI=real,&
MREX=real ,MREY=real

with the attributes

RANGE A description of the beam elements in which the error occurs. It may contain up to
five different ranges (see Section 4.7):

EALIGN,RANGE=QF,QD[2]/QD[4],#3/#5,#13/#15

TYPE Name(s) attached to physical element(s) by a TYPE=name clause (see Section 3). This
may contain up to five different types

EALIGN,TYPE=MQ,MA,MB,MC,MD

RANGE and TYPE can be given in the same command. All elements will be affected which
have TYPE=name or which are members of range.

DX The misalignment in the z-direction for the entry of the beam element (default: 0 m).
DX > 0 displaces the element in the positive z-direction (see Figure 8.1).

!contributed by E. Nordmark (1985).
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DY The misalignment in the y-direction for the entry of the beam element (default: 0 m).
DY > 0 displaces the element in the positive y-direction (see Figure 8.3).

DS The misalignment in the s-direction for the entry of the beam element (default: 0 m).
DS > 0 displaces the element in the positive s-direction (see Figure 8.1).

DPHI The rotation around the z-axis. A positive angle gives a greater y-coordinate for the
exit than for the entry (default: 0 rad, see Figure 8.3).

DTHETA The rotation around the y-axis according to the right hand rule (default: 0 rad, see
Figure 8.1).

DPSI The rotation around the s-axis according to the right hand rule (default: 0 rad, see
Figure 8.1).

MREX The horizontal read error for a monitor. This is ignored if the element is not a monitor

(see Figure 8.4). If MREX > 0, the reading for z is too high (default: 0 m).

MREY The vertical read error for a monitor. This is ignored if the element is not a monitor
(see Figure 8.4). If MREY > 0, the reading for y is too high (default: 0 m).

Example:
EALIGN,QF[2],DX=0.002,DY=0.0004*RANF () ,DPHI=0.0002*GAUSS ()

Refer to Section 2.4.8 for random value formats.

X
DTHETA
A
DX
original Y I 1
beam line | s
original entrance DS >
of the magnet

Figure 8.1: Example of Misplacement in the (z, s)-plane

8.2 Field Error Definitions

Field errors can be entered as relative or absolute errors. Different multipole components can be
specified with different kinds of errors (relative or absolute). If an attempt is made to assign both
a relative and an absolute error to the same multipole component, the absolute error is used and a
warning is given. Relative errors cannot be assigned to an element of the type MULTIPOLE. Relations
between absolute and relative field errors are listed below.

All field errors are specified as the integrated value [ K,ds along the magnet axis in m™ (see
Section 1.4). At present field errors may only affect field components allowed as normal components

%

in a magnet. This means for example that a dipole may have errors of the type dipole, quadrupole,
sextupole, and octupole; but not of the type decapole. There is no provision to specify a global relative
excitation error affecting all field components in a combined function magnet. Such an error may only
be entered by defining the same relative error for all field components.

Field errors can be specified for all magnetic elements by one of the statements



ROT

horizontal
x 5 | DPST ~ DPlane

Figure 8.2: Example of Misplacement in the (z,y)-plane

y
A
DPHI
DY
original X I ? 1
beam line | s
original entrance DS >
of the magnet

Figure 8.3: Example of Misplacement in the (y, s)-plane

EFIELD, RANGE=range,TYPE=name,RADIUS=rea1,DBL=rea1,DKL(i)=rea1,&
DBLR=real ,DKLR(i)=real,BROT=real,ROT(i)=real

EFCOMP, RANGE=range,TYPE=name,DBLN=rea1,DKLN(i)=rea1,&
DBLS=real,DKLS(i)=real

Each new EFIELD or EFCOMP statement replaces the field errors for all elements in its range (s). Any
old field errors present in the range are discarded. EFIELD defines the error in terms of relative or
absolute amplitude and rotation; while EFCOMP defines them in terms of absolute components.

The meaning of the attributes is:

RANGE A description of the beam elements in which the error occurs (see Section 4.7). It can
contain up to five different ranges:

EFIELD,QF,QD[2]/QD[4],#3/#5,#13/#15

TYPE Label(s) attached to physical element(s) by a TYPE=name clause. May contain up to
five different types like

EFIELD,TYPE=MQ,MA,MB,MC,MD

RADIUS Radius R were DKLR(z),1 < ¢ < 10 is specified (default 1 m). This attribute is required
if DBLR or any DKLR(i) is specified.

DBL Absolute error amplitude for the dipole strength (default: 0 rad). Its value is [ Kods
over the length of the magnet (see below).
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Figure 8.4: Example of Read Errors in a monitor
Absolute error amplitude for the multipole strength with (24:42) poles (default: 0 m=")
Its value is [ K;ds over the length of the magnet (see below).
Relative error in the dipole strength (default: 0, see below).

Relative error in multipole strength with (2 * ¢ 4 2) poles (default: 0, see below). This
attribute requires that RADIUS is also given.

Rotation angle ¢, for the dipole error (default: 0, see Figure 8.2).

Rotation angle ¢; for the multipole with (2+742) poles, where 1 < 4 < 10 (default: 0 rad,
see Figure 8.2).

Absolute error for the horizontal dipole strength (default: 0).
Absolute error for the normal multipole strength with (2 x4 4 2) poles (default: 0).
Absolute error for the vertical dipole strength (default: 0).

Absolute error in skewed multipole strength with (2 * ¢ + 2) poles (default: 0).

The dimensions for DKL(), DKLR(), DKLN(), DKLS(), and ROT() are preset to 10 in the command
dictionary, but this can be changed easily. Examples:

EFIELD,TYPE=MQ,DBL=5.0E-4,DKL(3)=0.0025*RANF () ,DKL(5)=0.0092*GAUSS ()
EFIELD,TYPE=MQ,DBLN=5.0E-4,DKLN(3)=0.0025*RANF () ,DKLN(5)=0.0092%GAUSS ()

Refer to Section 2.4.8 for random value formats.

8.2.1 Field Errors in Bending Magnets

Only the normal dipole, quadrupole, and sextupole components of the error field are considered in a
bending magnet. They are rotated together with the main field. The error field components have the

values:

AK,L

AK,L
AK,L

AK3L

DBL = DBLN = K L - DBLR,
1!
DKL (1) cos ¢, = DKLN(1) = KOLE -DKLR(1) - cos ¢4,

2!

DKL (2) cos ¢ = DKLN(2) = KOLF - DKLR(2) - cos ¢,
3!

DKL (3) cos ¢p5 = DKLN(3) = KOLF - DKLR(3) - cos ¢s.



8.2.2 Field Errors in Quadrupoles

Only the normal quadrupole component of the error field, that is the excitation error, is considered.
It is rotated together with the main field. The error field component has the value:

AK, =DKL(1) - cos¢, = DKLN(1) = K, L -DKLR(1) - cos ¢,.

8.2.3 Field Errors in Sextupoles

Only the normal sextupole component of the error field, that is the excitation error, is considered. It
is rotated together with the main field. The error field component has the value:

AK,L = DKL(2) - cos ¢, = DKLN(2) = K, L - DKLR(2) - cos ¢,.

8.2.4 Field Errors in Multipoles

Error fields and main field are rotated separately and then added. The error field components are
always absolute values:

(ABgo +i-ABy)L = DBL-exp(—:-BROT) = DBLN + % - DBLS,
(AK,; +i- ABy)L = DKL(k) - exp(—(k + 1) -ROT(k)) = DKLN(k) + ¢ - DKLS(k).

8.2.5 Field Errors in Orbit Correctors

The dipole error field is added to the main field and then rotated. A rotation (TILT) must not be used
when closed orbit corrections are to be computed. The error field components are always absolute
values:

(AB, +4 - AB,o)L = DBLexp(—i - BROT) = DBLN + 4 - DBLS.

8.3 Error Option Command

EOPT The random generator for MAD is taken from [21]. The error option command specifies different
seeds for random values:

EOPT,SEED=integer

SEED Selects a particular sequence of random values. A SEED value is an integer in the range
[0---999999999] (default: 123456789). SEED alone continues with the current sequence
(see also Section 2.4.5).

ADD If this logical flag is set, an EALIGN, EFIELD, or EFCOMP, causes the errors to be added
on top of existing ones. If it is not set, new errors overwrite any previous definitions.

Example:

EOPT,SEED=987456321



8.4 Error Print Command

This command prints a table of errors assigned to elements. The range for these elements has to be
specified. Field errors are printed as absolute errors, because all relative errors are transformed to the
corresponding absolute error at definition time. An error print is requested by the EPRINT statement

EPRINT,RANGE=range{,range},TYPE=name{,name},FULL

It has three attribute:

RANGE Up to five ranges for printing (see Section 4.7).
TYPE Up to five element types for printing.
FULL If this logical flag is true, all positions are printed.
Example:

EPRINT,QD[1]1/QD[5]

The selection of positions is done as for PRINT (see Section 5.3).



Chapter 9. Closed Orbit Commands

Table 9.1: Commands Related to the Closed Orbit

Name Function Section
CORRECT Complete correction algorithm 9.6
GETDISP Read table of dispersion readings 9.1
GETKICK Read table of corrector settings 9.2
GETORBIT Read table of monitor readings 9.3
MICADO Correction by MICADO algorithm 9.5
PUTDISP Write table of dispersion readings 9.1
PUTKICK Write table of corrector settings 9.2
PUTORBIT Write table of monitor readings 9.3
USEKICK Activate/deactivate Correctors 9.4
USEMONITOR | Activate/deactivate Monitors 9.4

There are six commands related to the closed orbit, listed in Table 9.1. Before using one of them a
beam line must be selected by means of a USE command (see Section 5.1).

9.1 GETDISP and PUTDISP Statements

The two commands

GETDISP,FILENAME=file-name
PUTDISP,FILENAME=file-name

serve the following purposes:

GETDISP Reads a TFS file file-name containing dispersion readings for the orbit position mon-
itors (see Appendix C). This file may have been written by a PUTDISP command or by
an external program. The readings can be used in a subsequent MICADO command to
find corrector settings for correcting the vertical dispersion.

PUTDISP Finds the closed orbit and writes the dispersion readings at all orbit position monitors
on a TFS file file-name. (see Appendix C). This file may be read again by MAD or
an external program.

The format of file-name is described in Appendix B. The default file-name is dispersion. The
table must have the following columns:

PUNAME Name of the monitor (string).

DX Horizontal dispersion (real).

DY Vertical dispersion (real).

STATUS Integer zero for active, nonzero for inactive.

9.2 GETKICK and PUTKICK Statements

The two commands
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GETKICK,FILENAME=file-name [,ADD]
PUTKICK,FILENAME=file-name [,PLANE=X]|Y]

serve the following purposes:

GETKICK

PUTKICK

Reads a TFS file file-name containing the settings for the orbit correctors (see Ap-
pendix C). This file may have been written by a PUTKICK command or by an external
program. The excitations will be used for any subsequent closed orbit search, unless
changed by MICADO or CORRECT commands. If the flag ADD is true, the setting read are
added to any previous settings.

Writes the current setting of the orbit correctors on a TFS file file-name. (see Ap-
pendix C). This file may be read again by MAD or an external program.

The format of file-name is described in Appendix B. The default file-name is setting. For reading
the table must have the following columns:

STR_NAME

KN_H

KN_V

STATUS

Name of the corrector (string).
Horizontal setting (real).
Vertical setting (real).

Integer zero for active, nonzero for inactive.

By default the table written has the same format. If the attribute PLANE=X or PLANE=Y is entered,
only the strengths for that plane are written, and there is only one column for settings, headed by
K N. Such a table cannot be read by MAD.

9.3 GETORBIT and PUTORBIT Statements

The two commands

GETORBIT,FILENAME=file-name
PUTORBIT,FILENAME=file-name

serve the following purposes:

GETORBIT

PUTORBIT

Reads a TFS file file-name containing orbit readings for the orbit position monitors
(see Appendix C). This file may have been written by a PUTORBIT command or by an
external program. The readings can be used in a subsequent MICADO command to find
corrector settings for correcting the orbit positions.

Finds the closed orbit and writes the readings of all orbit position monitors on a TFS
file file-name (see Appendix C). This file may be read again by MAD or an external
program.

The format of file-name is described in Appendix B. The default file-name is orbit. The table
must have the following columns:

PUNAME

X

Y

STATUS

Name of the monitor (string).
Horizontal position (real).
Vertical position (real).

Integer zero for active, nonzero for inactive.



9.4 USEKICK and USEMONITOR, Activate/deactivate elements

To provide more flexibility with orbit and dispersion correction two commands are provided:

USEMONITOR, STATUS=flag,MODE=name,RANGE={range}
USEKICK, STATUS=flag,MODE=name,RANGE={range}

The purpose of the two commands is:

USEMONITOR Activates or deactivates a selection of beam position monitors. This command affects
elements of types MONITOR, HMONITOR, of VMONITOR.

USEKICK Activates or deactivates a selection of orbit correctors. This command affects elements
of types KICKER, HKICKER, of VKICKER.

Both commands have the same attributes:

STATUS If this flag is true (on), the selected elements are activated. Active orbit monitor
readings will be considered, and active correctors will be allowed to vary in subsequent
correction commands. Inactive elements will be ignored subsequently.

MODE This name may take the value ALL, in which case all correctors or monitors will be set
to active or inactive. For the USEKICK command two more values are possible:

USED Changes all correctors which have been set to a non-zero value by a
preceding correction.

UNUSED Changes all correctors which have never been set by a preceding correc-
tion.
RANGE This attribute is only considered if MODE is not given. Up to five ranges may be specified

to select correctors or monitors to be affected.

One may do two iterations with disjoint sets of correctors as follows:

USE, ... ! set working beam line

.. ! define imperfections

CORRECT ,NCORR=32 ! use 32 correctors
USEKICK,OFF,USED ! deactivate used correctors
CORRECT ,NCORR=32 ! uses different set of correctors

Forcing reuse of the same set is achieved thus:

USE, ... ! set working beam line

.. ! define imperfections

CORRECT ,NCORR=32 ! use 32 correctors
USEKICK,OFF ,UNUSED ! deactivate unused correctors
CORRECT ,NCORR=32 ! uses same set of correctors

9.5 MICADO Statement

The command MICADO assumes that the closed orbit of the machine is known, and that the table of
monitor readings (and optionally of dispersion readings) exists. These can be the result of previous
GETORBIT and GETDISP commands.



MICADO, ERROR=real,NCORR=integer [,C2LIST] [,M1LIST]
[,DXWEIGHT=real] [,DXWEIGHT=real] [PLANE=letter]

It causes closed orbit correction by the MICADO method [2]. The program assumes that all correctors
are available for use, but it limits its choice to the most effective NCORR correctors. The monitors are
not used for orbit or dispersion readings, if flagged as inactive in the corresponding TFS files read.
The attributes have the following meaning:

ERROR The desired accuracy of the correction (r.m.s. error of the closed orbit, default: 0 m).

NCORR The maximum number of correctors to be used (correctors are selected by the program,

default: all).

DXWEIGHT The weight for horizontal dispersion correction. At present this should be left at zero
to omit dispersion correction in the horizontal plane.

DYWEIGHT The weight for vertical dispersion correction. If this weight is non-zero, an attempt is
made to correct the vertical dispersion.

PLANE If this attribute is X, only the horizontal correction is made; it it is Y, only the vertical
correction is made. In all other cases both planes are corrected.

Two attributes affect the printing of tables:
C2LIST Corrector settings after correction,
M1LIST Monitor readings before correction,

Both have the same possible values:

NONE Print summary only for this table (default),

USED Print table of all used correctors or monitors, plus summary,
ALL Print table of all correctors or monitors, plus summary.
Example:

MICADO,ERROR=1.E-4,C2LIST,M1LIST

9.6 CORRECT Statement

The CORRECT statement makes a complete closed orbit correction by the MICADO method, using the
computed values at the monitors:

CORRECT, NCORR=integer ,ERROR=value,ITERATE=integer,&
C1LIST,C2LIST,M1LIST,M2LIST&
[,DXWEIGHT=real] [,DYWEIGHT=real] [,PLANE=letter]

The program always assumes that all correctors and monitors are available for use, but at each iteration
it limits its choice to NCORR most effective correctors. The attributes have the following meaning:

NCORR The maximum number of correctors to be used (correctors are selected by the pro-
gram, default: all). At each iteration the program may select a different set of NCORR
correctors, thus using more than NCORR correctors in total.

ERROR The desired accuracy of the correction (r.m.s. error of the closed orbit, default: Om).



ITERATE The number of iterations to be made on the non-linear problem (default: 1). If
ITERATE=0, the monitor and corrector tables are printed, but no correction is made.

DXWEIGHT The weight for horizontal dispersion correction. At present this should be left at zero
to omit dispersion correction in the horizontal plane.

DYWEIGHT The weight for vertical dispersion correction. If this weight is non-zero, an attempt is
made to correct the vertical dispersion.

PLANE If this attribute is X, only the horizontal correction is made; it it is Y, only the vertical
correction is made. In all other cases both planes are corrected.

Four attributes affect the printing of tables:

C1LIST Corrector settings before correction,
C2LIST Corrector settings after correction,
M1LIST Monitor readings before correction,
M2LIST Monitor readings after correction.

All four have the same possible values:

NONE Print summary only for this table (default),

USED Print table of all used correctors or monitors, plus summary,
ALL Print table of all correctors or monitors, plus summary.
Example:

CORRECT ,ERROR=1.E-4,NCORR=100,ITERATE=3,C2LIST ,M1LIST



Chapter 10. Plotting and Tabulating

Table 10.1: Plotting Commands

Name Function Section
SETPLOT | Set plot options 10.1
RESPLOT | Set default plot options 10.1
PLOT Build a plot 10.2
STRING | Define a table expression 10.5
TABLE Print selected columns of a table 10.5

10.1 SETPLOT and RESPLOT Commands

The SETPLOT command allows to specify parameters common to all subsequent plots:

SETPLOT, FONT=integer,LWIDTH=real ,XSIZE=real,YSIZE=real,&
ASCALE=real,LSCALE=real,SSCALE=real,TSCALE=real

The RESPLOT command serves to reinstall the defaults for the SETPLOT command parameters:

RESPLOT

It is defined in the command dictionary as

RESPLOT: SETPLOT,FONT=1,LWIDTH=1.,XSIZE=0.,YSIZE=0. ,&
ASCALE=1.,LSCALE=1.,SSCALE=1.,TSCALE=1.

To change the plot size, a SETPLOT command specifying both XSIZE and YSIZE must be given
before the first PLOT command. These parameters must both be entered to be effective. They allow
to make long plots on the Versatec plotter. The values (0.,0.) give the default on any device. See
GXPLOT manual for details [15]. They may be set to almost the page size for A4 format output, i. e.
to 20 and 28 cm.

XSIZE Horizontal size of plot on the hard copy output device [cm)],
YSIZE Vertical size of plot on the hard copy output device [cm)].

All other SETPLOT options become effective when set, and remain so until redefined.

FONT Character font, (default: 1, Roman). Other fonts exist, but are normally specific to the
GKS-package used (see Appendix of the GKSGRAL manual [1]), and device-dependent.

LWIDTH A line width scale factor applying to curves (device-dependent). Accepted values are
normally 1, 3, and 5 (default: 1).

ASCALE Scale factor for the size of the plotted characters of the curve annotation,

LSCALE Scale factor for the size of the plotted characters of the axis labels (scale),

SSCALE Scale factor for the size of the plotted symbol at the point positions,

RSCALE Scale factor for the size of the plotted characters of the axis text.

The default is 1.0 for all four scale factors.

85



10.2 PLOT Command

The PLOT command produces one or several frames (pictures) at a time:

PLOT VAXIS=name,VAXIS1=name,VAXIS2=name,VAXIS3=name,VAXIS4=name,&

HAXIS=name,BARS=integer,STYLE=integer,SYMBOL=integer,&
MAXPLOT=integer,SO0RT=logical ,SPLINE=logical ,MULTIPLE=1ogical,&
FFT=logical ,HMIN=real ,HMAX=real ,VMIN=real,VMAX=real,&
TABLE=name,TITLE=string,PARAM=name,RANGE=range ,DELTAP=real, &
PARTICLE=integer,TURNS=integer

Its parameters are only valid for this one command:

VAXIS

HAXIS

BARS

STYLE

SYMBOL

MAXPLOT

SORT

SPLINE

MULTIPLE

Up to five names of dependent (vertical) variables to be plotted on the same azis (!).
If more than one vertical axis is required, one may enter up to five variable names per
axis via one of the parameters VAXIS1, VAXIS2, VAXIS3, VAXIS4. If VAXIS is specified,
the others are ignored. Example:

PLOT,HAXIS=S,VAXIS=BETX,BETY
gives a plot with BETX and BETY both referring to the same axis, whereas
PLOT,HAXIS=S,VAXIS1=BETX,VAXIS2=BETY
provides separate axes (with different scales, normally) for the two variables.
The name of the independent (horizontal) variable.
Connect each point to the horizontal axis by a vertical line.

Line style selection for all curves. The default value is 1 (solid line for all curves).
Further possible values are: 0 (no connecting line, i.e. nothing at all if no symbol
plotted, see below), 2 (dashed), 3 (dotted), 4 (dot-dashed), and others mentioned in
the GKSGRAL manual. A special value is 100: when chosen, it provides line styles 1, 2,
3,4, 1, 2, etc. for successive curves in the same frame.

This option will be mainly used for track plots, and allows to plot symbols at the points
which are plotted. These can be one of the following: “hardware” symbols, selected
by the values 1 (dot), 2 (+), 3 (*), 4 (0), or 5 (x); the turn number (curve number
for tables TWISS and TUNES) in each picture, selected by value 100; an upper case
character A...Z (201 to 226), lower case character (301 to 326), or a digit 0...9, selected
by 400 to 409. 200 and 300 act similar to 100: 200 makes turns (curves) loop over
A...Z, 300 over a...z. The SSCALE factor on the SETPLOT command applies to all of
these except the “hardware” symbols which are of fixed size.

Defines the maximum number of pictures (frames) to be plotted with one command
(default: 10). This is a protection against user mistakes mainly (e.g. plotting one frame
per s value around the whole machine).

Logical flag, sorts the points in ascending values of the abscissa.

Logical flag, connects curve points by a third order natural spline rather than by straight
line segments (for o, 3, u and D the correct formulae are used for interpolation if plotted
against s).

Logical flag, only for TRACK table plots: put all particles into one frame.



FFT Plot the result of the Fourier analysis of the picture, rather than the picture itself (not
yet implemented).

TABLE Name of the table to be plotted. If omitted, the last generated table will be used.

TITLE Text string to be put on top of the picture (default: run title as read on TITLE com-
mand).

PARAM Frame selection parameter: S or DELTAP for the TWISS table, PARTICLE or TURNS for
the TRACK table.

RANGE Machine range to be used (see Section 4.7).

DELTAP Values of DELTAP to be used (as on TWISS command).

PARTICLE Particle number.
TURNS Turn number.

The axis ranges are specified by lower and upper values. If neither value is given, scaling is fully
automatic, if both are given, they are used (possibly rounded). If only the lower limit is given as zero,
and all corresponding curves lie entirely above or below zero, the scale starts or ends at zero. If only
the upper limit is given as zero, the scale is symmetric to zero.

HMIN Lower limit of the abscissa.
HMAX Upper limit of the abscissa.
VMIN Up to four lower limits for each of the four vertical axes.
VMAX Up to four upper limits for each of the four vertical axes.

10.3 Axis and frame selection

All variables from the TWISS table, the TUNES table, and the TRACK table can be plotted on the
horizontal or vertical axis. For a list, see Sections 1.5, 1.5.5, and 1.5.6. In addition, the variables
RBETX, RBETY, RBXMAX, and RBYMAX can be requested. They stand for the square root of the variables
behind the 'R’.

The variables S and DELTAP in the TWISS table, and the variables PARTICLE and TURNS in the TRACK
table are used as frame parameters PARAM, either automatically or user-driven. This means that for
each value of this variable a new picture is plotted, as described below for the TWISS table.

10.3.1 TWISS table

Depending on the user specification when calculating the table this will normally contain Twiss pa-
rameter values for a number of S values (around the ring), and for one or more DELTAP values (see
Section 1.5). The table may therefore be regarded as a “matrix” with S as row index, DELTAP as
column index, and each “element” consisting of all Twiss values for a given pair (S, DELTAP), both S
and DELTAP included in these values.

A subset of the table can be chosen by specifying a RANGE for S, and a list of values for DELTAP. If
no S range is given, all S values are selected (!), and similarly for DELTAP: if no values given, all values
are used.

Out of this (sub-)matrix the user can now select variables to be plotted. Let us suppose that the
user always chooses BETY as ordinate. If S is abscissa, BETY will be plotted against S with DELTAP
as “frame parameter” (PARAM), i.e. for each selected value of DELTAP there will be a new plot frame.



Similarly for DELTAP as abscissa: in this case, BETY will be plotted against DELTAP for each valid S,
giving a new plot frame each time (this might be quite a lot if the user makes a mistake; in order
to avoid excessive output, the number of frames per plot command will be limited, with an option
MAXPLOT to explicitly changing this limit).

In the case that neither S nor DELTAP is horizontal axis (e.g. plotting BETY against BETX, whatever
this may yield), the user has to specify in addition what his frame parameter is. For each value of
this frame parameter (S or DELTAP) the values in the corresponding row or column will be plotted in
a separate frame. The default is DELTAP. The value of PARAM is ignored if HAXIS=S or DELTAP, i.e. the
“other” one is chosen automatically (if HAXIS=DELTAP, then S will act as frame parameter).

Examples:

PLOT,HAXIS=S,VAXIS=BETY

produces n plots (for the n DELTAP values in the table) with one curve each showing the dependence
of BETY on S.

PLOT,HAXIS=S,VAXIS=BETY,DELTAP=0.:0.01:0.01

produces two plots of this type, for DELTAP=0. and 0.01 (provided the DELTAP values exist in the
table).

PLOT,HAXIS=DELTAP,VAXIS=BETY,RANGE=#E

produces one plot BETY against DELTAP at the position of the last element in the table.
PLOT,HAXIS=DELTAP,VAXIS=BETY

will produce 10 plots (default value of MAXPLOT) for the first 10 S values in the table.
PLOT,HAXIS=BETX,VAXIS=BETY,PARAM=DELTAP ,DELTAP=0.

will produce one plot (at DELTAP=0), the curve points being (BETX,BETY) at all S values. Here,
PARAM=DELTAP may be omitted since this is the default.

PLOT,HAXIS=BETX,VAXIS=BETY,PARAM=S ,RANGE=#E

will produce one plot at the last S value, with (BETX,BETY) points for all DELTAP values in the table.

10.3.2 TRACK table

The TRACK table (see 1.5.6) has the same structure as the TWISS table, with PARTICLE as row index,
and TURNS as column index each of which can therefore be chosen as frame selection parameter. The
default parameter is PARTICLE. The value of PARAM is ignored if HAXIS=PARTICLE or TURNS, i.e. the
“other” one is chosen automatically (if HAXIS=TURNS, then PARTICLE will act as frame parameter).
The option MULTIPLE allows to plot the points of all particles in the same frame.

PLOT,HAXIS=X,VAXIS=PX,PARTICLE=1,3,5,MULTIPLE

will produce one plot of PX versus X for particles 1, 3, and 5.

10.3.3 TUNES table

The TUNES table (see Section 1.5.5) does not have frame-parameters. If PARAM is specified, it will be
ignored.

PLOT,TABLE=TUNES ,HAXIS=DELTAP,VAXIS=QX

will produce a plot of the x-tune versus DELTAP.



10.4 Tune Grid

MAD permits to plot an tune grid if the following two conditions are both true:

o A plot of @, versus @, or of (), versus (), is requested,

o At least one selection criterion has been entered on the PLOT command.

MAD then plots all resonance lines that are inside the plot window, and which fulfil conditions of the
form

szz + kyQy + sts = ps,

where k,, k,, k,, and p are integers, and s is the super-periodicity (integer). Furthermore, the user
must impose at least one condition of the form

F(ky,ky, k) =1y : 1y 2 0,

MW"
9 *7

and “/” are allowed. n;, n,, and ng are literal integers, and n; : n, : ng stands for a range. It is
interpreted like the range in a FORTRAN DO loop, i. e. it runs through the values ny,n; +n,,...,ns.
Examples:

where F is an arithmetic function k,, k,, k,, and integers only, and only the operators “+”, “—

k,=-2:2:2=>k, =-2,0,+2; ke +ky=0:0:1=k, = —k,.
Note that integer arithmetic is used, therefore the condition
2% (ky +ky/2) % (b, —1)/2=-3:3:2

will do something weird.
Criteria are specified via the following new attributes of the PLOT command:

PLOT, ..., ,NTMAX=integer,QCONDi=string,integerl,integer2,integer3

with the meaning:

NTMAX Maximum for |k,|+ |kzy|+ |k,| (default: 20). The absolute upper limits are |k, |+ |k, |+
|ks| < 20, and |k,| < 10.

QCONDi The function F, encoded as a quoted string, and the three integers n;,n,, ns for the
selection criterion (defaults: ” 7, 0, 0, 1). The digit i may run from 1 to 10 for up to

10 conditions. When several selection criteria are entered, they must all be true for a
line to be plotted.

Example:
PLOT,HAXIS=QX,VAXIS=QY,&

HMIN=21. ,HMAX=23.,VMIN=18.,VMAX=20.,&
NTMAX=5,Q5=0.2,%
QCOND1="KX",1,1,&
QCOND2="KS",-3,3,&
QCOND3="KX+KY",-10,10,10

will plot @, versus @),, and superpose the lines

koQo = ps, by = 1; k,Q, = ps,k, = -3,-2,-2,0,1,2,3;
ko Qo + kyQ, = ps, ku + by = —10,0, 10.

The line style reflects the importance of the resonance. The thickness varies from |k,| + |k,| = 1

(thickest) to |k;| 4 |k,| = 5 (thinnest) and remains constant from there on. Lines with k, = 0 are

solid, with |k,| = 1 dashed, with |k,| = 2 dot-dashed, and with |k,| > 2 dotted.



10.5 TABLE and STRING Commands

Any table created by MAD can be tabulated on the PRINT file by the command

TABLE,NAME=name ,COLUMNS=name{ ,name},SUM=name{,name}

It has the attributes
NAME Name of the table to be tabulated. By default the last table created is used.
COLUMNS Up to 50 names whose values shall be tabulated. These may be any of

¢ Name of a column in the table to be listed.

e Name of a descriptor in the table to be listed.

¢ Name of a global variable.

e Name of a global STRING expression (see below).

e Name of an expression predefined for the table.

SUM Up to 50 name of columns to be summed. The TABLE command will compute (but not
print) and sum up each name for each table row, and print the total after the table.
This may be used to compute approximate values for synchrotron integrals.

A STRING expression is defined as follows:

label:STRING,"string"

where label is the name given to the expression, and string (enclosed in single or double quotes)
must contain a valid expression. Operands in such an expression may include:

¢ Name of a column in the table to be listed.
e Name of a descriptor in the table to be listed.
¢ Name of a global variable.

e Name of an attribute of a command or definition.

A string may be redefined by repeating the STRING command.
Example:

OPTICS, ...

SIGX:STRING,"SQRT (BEAM[EX]*BETX)"

CHROMX : STRING, "SQRT (BETX*BEAM[EX] + (DX*DELTAP) "2)
TABLE,NAME=0PTICS,COLUMN=K1L,K2L,BETX,SIGX,SUM=CHROMX

10.5.1 Plotting Composite Values

The mechanisms from the preceding subsection can also be used for plotting. One may for example
plot the beam size after a NORMAL command by

NORMAL, ...

SIGX:STRING,&

USQRT(BEAM[EX]*(E11"2+E21°2)+ BEAM[EY]*E31"2+E42°2)+ BEAM[ET]*(E51"2+E61°2))"
SIGY:STRING,&

USQRT(BEAM[EX]*(E13"2+E23°2)+ BEAM[EY]*E33"2+E43°2)+ BEAM[ET]*(E53"2+E63"2))"
SIGT:STRING,&

USQRT(BEAM[EX]*(E15"2+E25°2)+ BEAM[EY]*E35"2+E45°2)+ BEAM[ET]*(E55"2+E65°2))"
PLOT,TABLE=EIGEN,HAXIS=S,VAXIS=SIGX,SIGY,SIGT



If desired, such expressions can be predefined and attached to a given table type. Such predefinitions
would be placed in the MAD command dictionary:

T_TWISS:KEYWORD,PR=3,SP=2,&
GAMX=(S(3),=3\*"") ,GAMY=(S(3),=3\*"") ,&
SIGX=(S(8),=3\*""),SIGY=(S(3),=3\*"")

T_TWISS:T_TWISS,&
GAMX="(1+ALFX"2)/BETX",GAMY="(1+ALFY"2)/BETY",&
SIGX="SQRT(BETX*BEAM[EX])",SIGY="SQRT(BETY+BEAM[EY])"

The name of the definition must be the table type, prefixed by T_. Note that the strings in the first
definition must be dimensioned at 3, thus allowing to enter information like dimension and axis label
information to the second definition.



Chapter 11. HARMON Module

Table 11.1: HARMON Commands

Name Function Section
HARMON Set up HARMON tables 11.1
HCELL Minimise aberrations 11.4
HCHROMATICITY | Calculate chromaticity 11.2
HFUNCTION Calculate harmonic functions 11.4
HRESONANCE Calculate resonance effects 11.3
HTUNE Tune chromaticity 11.2
HWEIGHT Set matching weights for resonances 11.4
HVARY Make a multipole variable 11.4
ENDHARM Quit HARMON program 11.1

The HARMON program by M. H. Donald [12] can be called directly from MAD.! Before calling HARMON,
a beam line must be selected by means of a USE command (see Section 5.1). The HARMON command
sets up internal tables and defines the emittances to be used for the analysis. The internal tables
are released and HARMON mode is terminated by the ENDHARM command. The available commands are
listed in Table 11.1.

It is important to note that HARMON does not consider the following:

¢ Coupling effects,
¢ Excitation errors (EFIELD, EFCOMP),
o Alignment errors (EALIGN).

The integral formalism used does not allow to take these effects into account, and users should be
aware of this.

11.1 Activating and Deactivating HARMON

The HARMON module is activated and the relevant tables are initialised by the command

HARMON,FX=real,FY=real ,FE=real

with the attributes:

FX Number of horizontal standard deviations to be taken,
FY Number of vertical standard deviations to be taken,
FE Number of longitudinal standard deviations to be taken.

If one of these values is omitted or 0, the program uses 1. The previous attribute 0BSERVE no longer
exists. If the machine has a symmetry, a second observation point is given at the symmetry point.
The HARMON module is deactivated and its tables are released by the ENDHARM command

ENDHARM

An example is given at the end of this Chapter.

! Adapted to MAD by D. Schofield (1983) and J.M. Veuillen (1988); rewritten extensively 1989.
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11.2 Chromaticity Calculation or Tuning

The chromaticity is calculated by a command without attributes:

HCHROMATICITY

The chromaticity is tuned to a desired value by the HTUNE command

HTUNE,QX’=real,QY’=real ,TOLERANCE=real

The desired values are entered as d@/d§ with the attributes

Qx’ Desired horizontal chromaticity (default: 0),

QY’ Desired vertical chromaticity (default: 0).

TOLERANCE  Tolerance desired (default: 0, i.e. as good as feasible).

The multipoles to be varied are specified with a HVARY command (see Section 11.4). Example:

HVARY,SF[K2] ,STEP=0.001
HVARY,SD[K2] ,STEP=0.001
HVARY,SFK2,STEP=0.0001
HTUNE,QX’=0.0,QY’=0.0

11.3 Resonance Calculations

The resonance effects are computed by the HRESONANCE command

HRESONANCE ,ORDER=integer ,DISP=1logical

The order of the resonance is selected by the attribute

ORDER Order of the resonance. This causes computation of the resonances
N1Q: + N2Qy = p1, N1Qz — N2Qy = ps,
with integer p;, p., and the condition N; + N, = ORDER,

DISP If set, the dispersion is included in the computation.

Contrary to previous versions of HARMON, all sextupole components are considered, i.e. all elements of
the types RBEND, SBEND, SEXTUPOLE, MULTIPOLE. Example:

HRESONANCE, ORDER=3,DISP

11.4 Distortion Functions

The HVARY command makes a multipole component variable:

HVARY,NAME=variable,STEP=real ,LOWER=real,UPPER=real

The command has the following attributes:

NAME The name of a variable to be varied. It must be the sextupole, octupole or decapole com-
ponent of an element having one of the types SBEND, RBEND, SEXTUPOLE, or MULTIPOLE.



STEP An initial step size to be used in matching (required),
LOWER Lower limit for the multipole strength,
UPPER Upper limit for the multipole strength.

The units for STEP, LOWER, and UPPER are the same as in the corresponding element definition. Ex-
amples:

HVARY ,NAME=SF1[K2] ,STEP=0.001,L0WER=-1.0,UPPER=0.0 ! Sextupole
HVARY ,NAME=MF1[K3L] ,STEP=0.001,L0WER=0.0,UPPER=1.0 ! Multipole

The HFUNCTIONS command

HFUNCTIONS

computes the harmonic functions as defined in [12]. For the chromaticities and dispersions, but only
for these, the effects of octupoles and decapoles are also considered and may be matched by varying
those components. The HCELL command

HCELL, TOLERANCE=real,CALLS=integer,QX’=real,QY’=real,&
QX’’=real,QY’’=real ,QX’’’=real ,QY’’’=real , &
DQXDEX=real ,DQYDEY=real ,DQYDEX=real,&
DX’I=real,DX’’I=real,BX’I=real,BY’I=real,RXI=real,RYI=real,&
DX’S=real ,DX’’S=real,BX’S=real,BY’S=real,RXS=real ,RYS=real

adjusts the following quantities to the values entered:

Tolerance Tolerance for the penalty function constructed.

CALLS Limit for the number of calls to the penalty function.
Qx° First-order horizontal chromaticity.

QY’ First-order vertical chromaticity.

QX Second-order horizontal chromaticity.

QY Second-order vertical chromaticity.

Qx’?? Third-order horizontal chromaticity.

Qy’?? Third-order vertical chromaticity.

DQXDEX Derivative of horizontal tune with horizontal emittance.
DQYDEY Derivative of vertical tune with vertical emittance.
DQYDEX Derivative of vertical tune with horizontal emittance.
DX’I Second-order horizontal dispersion at interaction point.
DX’’I Third-order horizontal dispersion at interaction point.
BX’I Variation of #, with energy at interaction point.

BY’'I Variation of 3, with energy at interaction point.

RXI Contributions of horizontal resonances at interaction point.



RYI Contributions of vertical resonances at interaction point.

DX’S Second-order horizontal dispersion at symmetry point.
DX’’S Third-order horizontal dispersion at symmetry point.
BX’S Variation of 4, with energy at symmetry point.

BY’S Variation of 3, with energy at symmetry point.

RXS Contributions of horizontal resonances at symmetry point.
RYS Contributions of vertical resonances at symmetry point.

The chromaticities and dispersions of all orders calculated in HARMON contain the effects of multipoles
up to the decapole. These multipole strengths may all be adjusted to minimise the distorsions. All
quantities are fitted in a least-squares sense. The sextupole components to be varied must be specified
in a HVARY command. The default matching weights are one for the first-order chromaticities, and zero
for all other quantities. Different weights can be set before calling HCELL with the HWEIGHT command

HWEIGHT,QX’=real,QY’=real,QX’’=real,QY’’=real ,QX’’’=real,QY’’’=real &
DQXDEX=real ,DQYDEY=real ,DQYDEX=real,&
DX’I=real,DX’’I=real,BX’I=real,BY’I=real,RXI=real,RYI=real,&
DX’S=real ,DX’’S=real,BX’S=real,BY’S=real,RXS=real ,RYS=real

QX’ QX’’ QX’’? QY’ QY’’ QY’’’ DQXDEX DQYDEY DQYDEX DX’I DY’I DX’S DY’S BX’I BY’I BX’S BY’S
RXT RYT RXS RYS

11.5 Example for a HARMON Sequence

USE, 0CT,SUPER=4,SYMM

BEAM, PARTICLE=ELECTRON,ENERGY=50,&
EX=0.0645E-6,EY=0.03225E-6,SIGE=1.25E-3

]

HARMON, FX=10,FY=10,FE=7

]

HCHROMATICITY

HVARY, NAME=SF1,STEP=0.001 ! Chromaticity sextupoles

HVARY, NAME=SD1,STEP=0.001

HTUNE, QX’=0,QY’=0

]

HRESONANCE, ORDER=3

]

HWEIGHT,QX’’=1.0,QY°’=1.0,QX’’’=10.0,QY’’°=10.0

HVARY, SF2,STEP=0.001,LOWER=0.,UPPER=1.

HVARY, SD2,STEP=0.001,LOWER=-1.,UPPER=0.

HVARY, SF3,STEP=0.001,LOWER=0.,UPPER=1.

HVARY, SD3,STEP=0.001,LOWER=-1.,UPPER=0.

HCELL ! Chromaticities minimised to all three orders

]

HRESONANCE

ENDHARM



Chapter 12. Matching Module

Table 12.1: Matching Commands

Name Function Section
CELL Initialise cell matching 12.1
MATCH Initialise insertion matching 12.1
WEIGHT Set matching weights 12.2
CONSTRAINT | Impose matching constraint 12.3
COUPLE Impose periodicity between two points 12.3
VARY Vary parameter 12.2
FIX Fix parameter value 12.2
RMATRIX Constraint on linear matrix 12.3
TMATRIX Constraint on second-order terms 12.3
LEVEL Set print level 12.4
LMDIF Minimisation by gradient method 12.5
MIGRAD Minimisation by gradient method 12.5
SIMPLEX Minimisation by simplex method 12.5
ENDMATCH Leave matching mode 12.1

Before a match operation a beam line must be selected by means of a USE command (see Section 5.1).
Matching of this line is then initiated by a CELL or MATCH command. From either of these commands to
the corresponding ENDMATCH command MAD recognises the matching commands listed in Table 12.1.
For a mathematical description of the minimisation procedures see [19]. In particular one may do the
following:

¢ Define parameter(s) to be varied,

Couple and/or set parameter values,

Define constraints,

e Select desired printout detail,

Match by different methods.
The matching commands are described in detail below. Some other commands can also be issued

during matching.

12.1 Activation and Deactivation of the Matching Module

Before matching a beam line must be selected by means of a USE command (see Section 5.1). The
type of match desired is then defined by entering a CELL or MATCH command.

12.1.1 Matching a Periodic Cell

In the first mode, called cell matching, a periodic cell is adjusted. The periodicity is enforced exactly,
and constraints are fulfilled in the least squares sense. Cell matching mode is initiated by the CELL
command:

CELL,DELTAP=real,ORBIT
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It has two attributes:

DELTAP The value of the momentum error Ap/poc for which the match should be performed
(default: 0).

ORBIT If this flag is true, the closed orbit is also matched.

Examples:

! Match a simple periodic cell

USE,PERIOD=0CTANT ,RANGE=CELL1

CELL,ORBIT !

! Match a symmetric and periodic cell with repetitions
USE,HALFCELL,SYMM, SUPER=5

CELL

12.1.2 Insertion Matching

In the second mode, called insertion matching, a beam line is matched with given initial values for
the optical functions. Constraints may be imposed in other places, i.e. intermediate or end values can
be requested. In this case the initial values are assumed as exact, and constraints are fulfilled in the
least squares sense. The insertion matching mode is initiated by the MATCH command. In the simplest
form the initial values for the optical functions are taken from the periodic solution of another beam
line. In this case, all of (5, By, @y, y, Doy Dy, D, , D, ) are transmitted to be used as initial values.
If there is a constraint on the orbit, the values (z,p,,y,p,) of the orbit are also transmitted. Such a
condition is entered in the form

MATCH,LINE=beam-line,MUX=real ,MUY=real ,DELTAP=real,ORBIT

The initial phases angles may be specified by:

MUX The initial horizontal phase p,,

MUY The initial vertical phase p,.

DELTAP The value of the momentum error AE/pyc for which the match should be performed
(default: 0).

ORBIT If this flag is true, the closed orbit is also matched.

Example:

CELL1: LINE=(...)

INSERT: LINE=(...)
USE, INSERT
MATCH,LINE=CELL1,MUX=9.345,MUY=9.876,0RBIT

This matches the beam line INSERT. Initial conditions are given by the periodic solution for the beam
line CELL1.
It is also possible to enter numerical initial values. The MATCH command then has the form

MATCH, BETX=real,ALFX=real , MUX=real,&
BETY=real ,ALFY=real ,MUY=real ,&
X=real,PX=real,Y=real,PY=real,&
DX=real,DY=real ,DPX=real ,DPY=real,&
DELTAP=real ,0RBIT




It accepts as attributes the linear lattice functions listed in Section 1.5.3) and the orbit coordinates
listed in Section 1.5.1. Omitted initial values are assumed to be zero. This implies that at least BETX
and BETY are required to obtain physically meaningful results. Example:

USE, INSERT
MATCH, BETX=1.6,BETY=0.1

This matches the beam line INSERT with given initial values. Values not specified are set to zero.
The end conditions of a previous beam line can finally be transmitted via a SAVEBETA command
(see also section 5.6.3):

USE,LINE1

SAVEBETA ,LABEL=XYZ ,PLACE=#E
TWISS

USE,LINE2

MATCH,BETAO=XYZ

This example transmits all values (including phases) as initial values. The orbit is used only if the
flag ORBIT is entered. Some values may also be changed explicitly:

USE,LINE1

SAVEBETA ,LABEL=XYZ ,PLACE=#E

TWISS

USE,LINE2

MATCH,BETAO=XYZ ,MUX=1.234,MUY=4.321

will overwrite the phases taken from the previous line.

12.1.3 End of Matching Run

The ENDMATCH command terminates the matching section and deletes all tables related to a tracking
run:

ENDMATCH

12.2 Variable Parameters

A parameter to be varied is specified by the VARY command:

VARY,NAME=variable,STEP=real,LOWER=real ,UPPER=real

It has four attributes:
NAME The name of the parameter or attribute to be varied (see Section 2.4.10),

STEP The approximate initial step size for varying the parameter. If the step is not entered,
MAD tries to find a reasonable step, but this may not always work.

LOWER Lower limit for the parameter (optional),
UPPER Upper limit for the parameter (optional).
Examples:

VARY,PAR1,STEP=1.0E-4 ! vary global parameter PAR1
VARY,QL11[K1] ,STEP=1.0E-6vary attribute K1 of the QL11
VARY,Q15[K1] ,STEP=0.0001,LOWER=0.0,UPPER=0.08 ! vary with limits



If the upper limit is smaller than the lower limit, the two limits are interchanged. If the current value
is outside the range defined by the limits, it is brought back to range. After a matching operation all
varied attributes retain their last value. They are never reset to an old value. Parameters cannot be
varied if they depend on other parameters. Example:

P1:=10.0-P2

Here P2 may be varied, but P1 may not. The reason is that MAD is not able to compute P2 in terms
of P1.
The command FIX removes a parameter or attribute from the table of variable parameters:

FIX,NAME=variable

Example:

FIX,NAME=QF [K1]

12.3 Constraints

12.3.1 Simple Constraints

Simple constraints are imposed by the CONSTRAINT command. It can take three forms. The first form
is

CONSTRAINT,PLACE=range,LINE=beam-line,MUX=real ,MUY=real

Here all of (8,, 8y, @z, 0y, Dy, Dy, D, , D, ) are constrained in range to the corresponding values of
beam-line. If any of the six components of the closed orbit of the beam line is constrained, the
command implies setting of the ORBIT flag. The phase advances (u,,u,) may also be specified on
the constraint. If the match succeeds, the part of the beam line from its beginning to place has the
specified phase advance. The optical functions are such that beam-line could be inserted in place
without a mismatch. If beam-1ine was defined with formal arguments, an actual argument list must
be provided. Normally place refers to a single observation point (see Section 4.7).
The second form of the CONSTRAINT command is

CONSTRAINT,PLACE=range,BETAO=betal-name,MUX=real ,MUY=real

Here all of (8,, 8y, @z, 0y, Dy, Dy, D, , D, ) are constrained in range to the corresponding values of
a pre-calculated BETAO module (see 5.6.3). If the ORBIT flag is set, then the six components of the
closed orbit of the beam line are also constrained. Note that the default weights for T or PT are zero.
The phases (u,, ity ) are not taken from the BETAO block. If they are to be constrained, they must be
explicitly specified on the CONSTRAINT command. However, it is permitted to specify the phase values
from the BETAO block:

CONSTRAINT,PLACE=...,BETAO=DATA ,MUX=DATA[MUX] ,MUY=DATA[MUY]

If the match succeeds, the part of the beam line from its beginning to place has the specified phase
advance. Normally place refers to a single observation point (see Section 4.7).

The third form

CONSTRAINT, PLACE=place,&
BETX=real ,ALFX=real,MUX=real,&
BETY=real ,ALFY=real ,MUY=real,&
X=real,PX=real,Y=real,PY=real,T=real,PT=real,&
DX=real ,DPX=real,DY=real,DPX=real




allows one to enter numerical values for any optical function(s) in place. Place may refer to a range,
denoted by two positions or by a beam line name. The constraint then applies to all positions within
the range. The linear lattice functions listed in Section 1.5.3 can all be constrained. The matching
weights can be set by the WEIGHT command (see below). Upper and lower limits can be requested by
replacing the equals sign by a less than sign (<) or by a greater than sign (>). Both lower and upper
limits may be requested in the same command. If only lower and upper limits are used in a constraint,
the corresponding place may be a range like e.g. a beam line. Example:

INSERT: LINE=(...)

CELL1: LINE=(...)
USE, INSERT
MATCH,LINE=CELL1
CONSTRAINT,INSERT,DX<2.5,DX>0.0

Note that

12.3.2 Sub-Period Constraint

It is sometimes desired to make the linear lattice parameters equal in two places without imposing
their actual values. This is requested by the COUPLE command

COUPLE,RANGE=range,MUX=real ,MUY=real

where range refers to an observation range (see Section 4.7). MAD tries to adjust the matched beam
line such that the functions (3., 8y, as, oy, Dy, Dy, D, , D, ) are equal in the two end points of the
range. The orbit cannot be constrained by this command. Optionally the phase advances over the
range may be specified by means of the attributes MUX and/or MUY. The matching weights are taken
from the latest WEIGHT command (see below). Example:

M: MARKER
INSERT: LINE=(...,M,...,M,...)
USE, INSERT

MATCH,BETX=2,BETY=1
COUPLE,M[1]/M[2] ,MUX=0.5
12.3.3 Constraints on Transfer map

Often the constraints are desired on the transfer map rather than on the lattice functions. The two
commands

RMATRIX,RANGE=range {,RM(i,k)=real} {,WEIGHT(i,k)=real}
TMATRIX,RANGE=range {,TM(i,k,1)=real} {,WEIGHT(i,k,l)=real}

are provided for this purpose. They have the following attributes:
RANGE Denotes the beginning and end of the range over which the transfer map is to be fitted.

RM(i,k) A real array of dimension (6,6). As many elements of the linear transfer matrix can
be constrained.

TM(i,k,1) A real array of dimension (6,6,6). As many elements of the linear transfer matrix can
be constrained.

WEIGHT A real array of dimension (6,6) or (6,6,6) respectively. If given, this specifies the
matching weights for the corresponding matrix elements (default: 1).



12.3.4 Matching Weights

The matching procedures try to fulfil the constraints in a least square sense. A penalty function is
constructed which is the sum of the squares of all errors, each multiplied by the specified weight. The
larger the weight, the more important a constraint becomes. The weights are taken from a table of
current values. These are initially set to default values, and may be reset at any time to different
values. Values set in this way remain valid until changed again. The WEIGHT command

WEIGHT, BETX=real,ALFX=real , MUX=real,&
BETY=real ,ALFY=real ,MUY=real ,&
X=real,PX=real,Y=real,PY=real,T=real,PT=real, &
DX=real ,DPX=real ,DY=real,DPY=real

changes the weights for subsequent constraints. The weights are entered with the same name as the
linear lattice function to which the weight applies, as listed in Section 1.5. The default weights are
listed in Table 12.2. Note that matching T or PT always requires a WEIGHT command, since these
quantities have zero default weights. Frequently the matching weights serve to select a restricted set
of functions to be matched in a LINE=1ine constraint. One may match the dispersion at a given place
to the dispersion of a line as in the following example:

WEIGHT, BETX=0.0,BETX=0.0,ALFX=0.0,ALFY=0.0,MUX=0.0,MUY=0.0
CONSTRAINT, #E,LINE=CELL

Table 12.2: Default Matching Weights

name | weight | name | weight | name | weight | name | weight
BETX 1.0 ALFX 10.0 MUX 10.0
BETY 1.0 ALFY 10.0 MUY 10.0

X 10.0 | PX 100.0 | Y 10.0 | PY 100.0
T 0.0 PT 0.0
DX 10.0 | DPX 100.0 | DY 10.0 | DPY 100.0

12.4 Matching Output Level

The LEVEL command sets the output level for matching:

LEVEL,LEVEL=integer

Recognised level numbers are:

0 Minimum printout: Messages and final values only,

1 Normal printout: Messages, initial and final values,

2 Like LEVEL=1, plus every tenth new minimum found,

3 Like LEVEL=2, plus every new minimum found,

4 Like LEVEL=3, plus eigenvalues of covariance matrix (MIGRAD method only).
Example:

LEVEL,2



12.5 Matching Methods

12.5.1 LMDIF, Gradient Minimisation

The LMDIF command minimises the sum of squares of the constraint functions using their numerical
derivatives:

LMDIF,CALLS=integer ,TOLERANCE=real

It is the fastest minimisation method available in MAD. The command has two attributes:
CALLS The maximum number of calls to the penalty function (default: 1000).
TOLERANCE  The desired tolerance for the minimum (default: 10~°).

Example:

LMDIF,CALLS=2000,TOLERANCE=1.0E-8

12.5.2 MIGRAD, Gradient Minimisation

The MIGRAD command minimises the penalty function using its numerical derivatives of the sum of
squares:

MIGRAD,CALLS=integer ,TOLERANCE=real ,STRATEGY=1

The command has two attributes:
CALLS The maximum number of calls to the penalty function (default: 1000).
TOLERANCE  The desired tolerance for the minimum (default: 10~°).

STRATEGY A code for the strategy to be used (default: 1). The user is referred to the MINUIT
manual for explanations [19].

Example:

MIGRAD,CALLS=2000,TOLERANCE=1.0E-8

12.5.3 SIMPLEX, Minimisation by Simplex Method

The SIMPLEX command minimises the penalty function by the simplex method:

SIMPLEX,CALLS=integer ,TOLERANCE=real

Details are given in the description of the MINUIT program [19]. The command has two attributes:
CALLS The maximum number of calls to the penalty function (default: 1000).

TOLERANCE  The desired tolerance for the minimum (default: 10~°).

Example:

SIMPLEX,CALLS=2000,TOLERANCE=1.0E-8



12.6 Matching Examples

12.6.1 Simple Periodic Beam Line

Match a simple cell with given phase advances:

QF: QUADRUPOLE,...

QD: QUADRUPOLE,...

CELL1: LINE=(...,QF,...,QD,...)
USE,CELL1
CELL

VARY ,NAME=QD[K1],STEP=0.01

VARY ,NAME=QF [K1] ,STEP=0.01
CONSTRAINT,PLACE=#E,MUX=0.25,MUY=1/6
MIGRAD,CALLS=2000

ENDMATCH

12.6.2 Insertion Matching

Match an insertion INSERT to go between two different cells CELL1 and CELL2:

CELL1: LINE=(...)
CELL2: LINE=(...)
INSERT: LINE=(...)
USE, INSERT
MATCH,LINE=CELL1
VARY,...
CONSTRAINT,PLACE=#E,LINE=CELL2,MUX=...,MUY=...
SIMPLEX
MIGRAD
ENDMATCH

Adjust the beam line INSERT such that it has specified values of the optical functions at its beginning
and matches the line CELL7 at its end:

CELL7: LINE=(...)

INSERT: LINE=(...)
USE, INSERT
MATCH,BETX=1.6,BETY=0.1
VARY,...
CONSTRAINT,PLACE=#E,LINE=CELL7
SIMPLEX
MIGRAD
ENDMATCH

12.6.3 A Matching Example for LEP, Version 11

Here the end values are required to be exact. This may be achieved by inverting the beam line:

! Define beam lines

CELL: LINE=(QDH,L23,SD,L22,B6,L21,QF,L23,SF,L.22,B6,1.24,QDH)

MARK: MARKER

DISS: LINE=(QS11,L25,BW,L24,QS12,L25,B4,1.24,QS13,1.25,B4,&
L24,Q514,1.25,B4,1.31,Q815,L.25,B4,1.32,5F2,1.23,Q516)



RFS: LINE=(L5,QS85,L5,Q86,L5,2«(QS7H,MARK,QS7H,L5,QS8,L5))

LOBS:  LINE=(L1,Qs1,L2,Qs2,L3,QS3,L4,Q54)

INSS:  LINE=(LOBS,RFS,DISS,L21,B6,L22,QDH)

USE, (-INSS)

|

! Call matching module and define initial values

MATCH,LINE=CELL

|

! Variable parameters
VARY,QS1[K1] ,STEP=0.01,L0OWER=-0.06 ,UPPER=0.06
VARY,QS2[K1] ,STEP=0.01,L0OWER=-0.06 ,UPPER=0.06
VARY,QS3[K1] ,STEP=0.01,L0OWER=-0.06 ,UPPER=0.06
VARY,QS4[K1] ,STEP=0.001,LOWER=-0.06 ,UPPER=0.06
VARY,QS5[K1] ,STEP=0.01,L0WER=-0.035,UPPER=0.035
VARY,QS6[K1] ,STEP=0.01,L0WER=-0.035,UPPER=0.035
VARY,QS7[K1] ,STEP=0.01,L0WER=-0.035,UPPER=0.035
VARY,QS8[K1],STEP=0.01,L0WER=-0.035,UPPER=0.035
VARY,QS11[K1],STEP=0.01,LOWER=-0.035,UPPER=0.035
VARY,QS12[K1] ,STEP=0.01,LOWER=-0.035,UPPER=0.035
VARY,QS13[K1] ,STEP=0.01,LOWER=-0.035,UPPER=0.035
VARY,QS14[K1] ,STEP=0.01,LOWER=-0.035,UPPER=0.035
VARY,QS15[K1] ,STEP=0.01,LOWER=-0.035,UPPER=0.035
VARY,QS16[K1] ,STEP=0.01,LOWER=-0.035,UPPER=0.035

! Constraints at the interaction point
WEIGHT ,BETX=10.0,BETY=50.0,ALFX=10.0,ALFY=10.0,
MUX=10.0,MUY=10.0,DX=10.0,DPX=100.0
CONSTRAINT,#E,BETX=1.6,BETY=0.1,ALFX=0.0,ALFY=0.0,
MUX=1.771875,MUY=2.0125,DX=0.0,DPX=0.0

! Constraints at two intermediate points (MARK occurs twice)
CONSTRAINT,MARK,ALFX=0.0,ALFY=0.0,DX=0.0,DPX=0.0
COUPLE,MARK[1]/MARK[2]

! Constraint for limits of dispersion in dispersion suppressor
CONSTRAINT,DISS,DX>0,DX<1.25

! Perform match
SIMPLEX,CALLS=1000
MIGRAD,CALLS=24000,TOLERANCE=1.0E-9
|
! End of matching procedure
ENDMATCH

12.6.4 Examples for Complex Matching Constraints

All initial conditions and constraint values can depend on variable parameters. This feature permits to
set up very complex matching conditions. The first example shows how an insertion can be designed
which exchanges the values of the g-functions for the two transverse planes in two places M1 and M2:



M1: MARKER

M2: MARKER

INSERT: LINE=(...,M1,...,M2,...)
CONSTRAINT,M1,BETX=BETA1,ALFX=ALFA1 ,BETY=BETA2,ALFY=ALFA2
CONSTRAINT,M2,BETX=BETA2,ALFX=ALFA2 ,BETY=BETA1,ALFY=ALFA1
VARY,BETA1,STEP=0.01
VARY,BETA2,STEP=0.01
VARY,ALFA1,STEP=0.01
VARY,ALFA2,STEP=0.01

The trick is to match the lattice functions in M1 to the four variable parameters
BETA1,ALFA1,BETA2,ALFA2

and in M2 to the same parameters in a different order.
The second example is taken from a spin matching problem.

! Match towards interaction point
MULT:=(1+SINTHETA) /SINTHETA ! A constant multiplication factor.
MATCH,LINE=SRF3M

! Lattice functions imposed at interaction point
WEIGHT ,BETX=1,BETY=10,DY=30,DPY=300
CONSTRAINT,LORIPS,BETX=1.75,BETY=0.07,ALFX=0,ALFY=0,DY=0

! kkkkk Spin matching constraints kkkkk
RMATRIX,DBB[1]/LORIPS,RM(3,4)=0,RM(2,1)=AUX
VARY,AUX,STEP=0.01
RMATRIX,B2UP[1]/LORIPS,RM(3,4)=0,RM(2,1)=MULT*AUX

! Quadrupoles to be varied

VARY,KQSOMP,STEP=0.01,L0WER=-0.2,UPPER=0.
VARY,KQS1MP,STEP=0.01,L0WER=-0.1,UPPER=0.
VARY,KQS3MP,STEP=0.01,L0WER=-0.1,UPPER=0.
VARY,KQS4MP,STEP=0.01,L0WER=-0.1,UPPER=0.
VARY,KQS5AP,STEP=0.01,L0WER=-0.1,UPPER=0.
VARY,KQS6AP,STEP=0.01,L0WER=-0.1,UPPER=0.
VARY,KQS5BP,STEP=0.01,L0WER=-0.1,UPPER=0.
VARY,KQS6BP,STEP=0.01,L0WER=-0.1,UPPER=0.

[
o O
N

|
o

! Initiate matching
SIMPLEX,CALLS=1000,TOLE=1E-3
LMDIF,CALLS=6000,TOLE=1E-12
ENDMATCH

Here the interesting point lies in the spin matching constraints. The conditions RM(3,4)=0 on the two
RMATRIX commands ensure the proper phase advances for the vertical phase (0.5 and 1.5 respectively).
The conditions on RM(2,1) enforce the condition

1+ sin6
(14 sin )C

sin

A21 =

21-

where A and C are the transfer matrices from the centre of either vertical bend to the interaction
point. Since a direct coupling between the values of the transfer matrix in two different points is not



possible, a freely variable parameter AUX is introduced. The value of C3; is matched to AUX, while the
value of A,; is matched to an expression in AUX.



Chapter 13. Tracking Module

Table 13.1: Tracking Commands

Name Function Section
NOISE Define noise on parameters 13.2
OBSERVE | Define observation point 13.3
START Define initial coordinates 13.4
RUN Start tracking 13.6
TSAVE Save particle positions 13.5
ENDTRACK | Terminate tracking mode 13.1

Before starting to track, the working beam line must be selected by means of a USE command (see
Section 5.1). The energy and emittances should be defined by a BEAM command (see Section 5.2).
Tracking is then initiated by the TRACK command. From this command to the corresponding ENDTRACK
command MAD accepts the tracking statements listed in Table 13.1. Tracking is done in parallel i.e.
the coordinates of all particles are transformed at each beam element as it is reached.

13.1 Activation and Deactivation of the Tracking Module

Tracking through a beam line is initiated by the TRACK command. It has the form

TRACK [,0NEPASS] [,DAMP] [,QUANTUM]

The emittances and ¢’s are evaluated from the latest BEAM command. A BEAM command should not
occur while the tracking module is active. The TRACK command has three attributes:

ONEPASS This flag tells MAD not to compute the normalisation transformations and to assume
that the machine is stable.

The two other flags have only effect if synchrotron radiation is switched on on the BEAM command:

DAMP This flag causes MAD to consider the systematic component (bias) of energy loss by
synchrotron radiation.

QUANTUM If this flag is present together with DAMP, it causes MAD to simulate the quantum effects
of synchrotron radiation.

The former attributes RFCAVITY and DELTAP are ignored in this version of MAD. The TRACK
command must be preceded by a EMIT command, which allows to adjust the average momentum
error. The RF frequencies are set by TRACK according to this momentum error set in EMIT.

The synchrotron tune ¢, computed must be non-zero, if E; or o, is used on the BEAM command.
Example for a TRACK command:

BEAM, PARTICLE=ELECTRON,ENERGY=50,RADIATE,&
EX=0.0645E-6,EY=0.03225E-6,5SIGE=1.25E-3
EMIT,DELTAP=0.01 TRACK,DAMP,QUANTUM

The ENDTRACK command terminates the tracking section:

ENDTRACK

It deletes all information relevant to the current tracking run.
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13.2 NOISE Statement

One may define noise to be applied to magnet excitations with the NOISE statement

NOISE,VARIABLE=variable,AMPLITUDE(i)=real ,FREQUENCY=real ,PHASE=real

The NOISE statement must be entered after the TRACK, but before the RUN command. It has the effect
to apply several sinusoidal variations to the specified parameter. The command has four attributes.

VARIABLE The variable to be affected.
AMPLITUDE(i) The value of the i** noise amplitude 4;.
FREQUENCY (i) The value of the 7** noise frequency f;.
PHASE (i) The value of the i* noise phase ¢;.
Before each turn is tracked, the noise is re-evaluated as
N
AA = Z A, cos(2m(fit + &:))-
i=1

where ¢ is the real time.

13.3 OBSERVE Statement

The statement 0BSERVE

OBSERVE,PLACE=place,TABLE=table

defines a new observation point where a track table is to be generated. It has the attributes:
PLACE The observation point. Only the first occurrence in the machine is used.
TABLE The name to be given to the table.

The 0BSERVE statement must be entered after the TRACK, but before the RUN command.

13.4 START Statement

The START command defines the initial coordinates of the particles to be tracked. There may be many
START statements, one for each particle. Particles are always started with coordinates relative to the
computed closed orbit for the defined energy error. The command format is:

START, X=real,PX=real,Y=real,PY=real,T=real,DELTAP=real,&
FX=real ,PHIX=real,FY=real ,PHIY=real,FT=real,PHIT=real

The START statement must be entered after the TRACK, but before the RUN command.

For each canonical pair two specifications are possible. First, they may be specified as displace-
ments with respect to the closed orbit: X, PX, Y, PY, T, DELTAP, as defined in Section 1.5.1. In this case
the initial conditions are:

r =X, y2 = PX,

y = Yapy = PY,
At = T, AE/CpO — DELTAP.



It is also possible to enter rotations in normalised phase space. Initial conditions Z in normalised
phase space are related to the closed orbit and normalised via the eigenvectors:

Z =27, + vV E,FX(RV; cosPHIX + SV sin PHIX)
+ 4/ EyFY(RV) cos PHIY + SV sin PHIY)

+ VE;FT(RV), cos PHIT 4 SV}, sin PHIT)

where Z,, is the closed orbit vector, RV, and SV, are the real and imaginary parts of the k" eigen-
vectors. The other variables have the meaning:

FX The normalised (betatron) amplitude for mode 1,
PHIX The (betatron) phase PHIX = ¢, /27 for mode 1,

FY The normalised (betatron) amplitude for mode 2,
PHIY The (betatron) phase PHIY = ¢, /27 for mode 2,

FT The normalised (synchrotron) amplitude for mode 3,
PHIT The (synchrotron) phase PHIT = ¢, /27 ) for mode 3.

The eigenvectors are computed in the TRACK command. The emittances are calculated in the latest
EMIT command preceding it, or taken from the latest BEAM command, whichever comes last.

13.5 TSAVE Statement

The TSAVE command

TSAVE,FILENAME=string

saves the latest particle positions on the file named by string. These will normally be the positions
of surviving particles after the last RUN command. If no RUN command has been seen yet, the positions
are taken from any START commands seen. The positions are written as START commands, which may
be read by a subsequent tracking run.

13.6 RUN Statement

This command starts or continues the actual tracking:

RUN,METHOD=TRANSPORT |LIE3|LIE4 [,TABLE=name]&
TURNS=integer ,FPRINT=integer,FFILE=integer

The RUN command initialises tracking and uses the values in the last particle bank for initial conditions.
It optionally builds a table of particle positions, suited for plotting or further analysis; it may also
write a portable binary file. Note that the CONTINUE command has been deleted from Version 8.2.
RUN has the attributes:

METHOD The name of the tracking method to be used. It may be one of:

TRANSPORT =~ The TRANSPORT method [6], using transfer matrices of order two
(default),

LIE3 The Lie-algebra method [13] to order 2 in the canonical variables,



TABLE

TURNS

FPRINT

FFILE

Example:

LIE4 The Lie-algebra method [13] to order 3 in the canonical variables.

The name to be given to the tracking table. If a table with the same name already
exists, it is discarded. If TABLE is omitted, no table is built. The table is not saved
automatically; it can be saved on a file by the ARCHIVE command.

The number of turns (integer) to be tracked (default: 1).

The print frequency, an integer (default: no printing). Printing always occurs before
the first and after the last turn. If the value of FPRINT is greater than zero, printing also
occurs after every FPRINT turns. This print-out includes normalised values, invariants,
and phases (for their definitions see 13.4). Printing in other positions may be requested
by a SELECT,TRACK command.

The output frequency for the binary file, an integer (default: no printing). If the value
of FFILE is greater than zero, output occurs after every FFILE turns. The binary file is
written in EPIO format, and has not been frozen yet. The output will be used by an
off-line analysis program.

RUN,TURNS=1000,FPRINT=10

This RUN command tracks 1000 turns and prints every 10°* turn.

13.7 A Tracking Example

L: LINE=(OCT,-0CT)

USE,L

! Misalignments and closed orbit correction may be done here.
BEAM,EX=0.1E-6,EY=0.05E-6,ET=1.0E-3,ENERGY=60.0

TRACK

START,X=0.001,Y=0.001,DELTAP=0.001 ! absolute X and Y
START,FX=10.0,FY=10.0,DELTAP=-0.001! particle at 10 sigma
RUN,TURNS=1024,FPRINT=1
PLOT,HAXIS=X,VAXIS=PX,MULTIPLE

ENDTRACK

Plotting can be requested as described in section 1.5.6. The position of the PLOT command is irrelevant,
as long as it occurs after the RUN command, and before any command which overwrites the track table

generated.



Chapter 14. Subroutines and Procedures

Table 14.1: Subroutine Commands

Name Meaning Section
SUBROUTINE Begin subroutine definition 14.1
ENDSUBROUTINE | End subroutine definition 14.1
CALLSUBROUTINE | Call predefined subroutine 14.2
DO Repeated execution of commands 14.3
ENDDO End of DO group 14.3

The input language provides features for gathering strings of statements, which may be treated as a
simple command called a subroutine. There are commands to define a subroutine in terms of other
commands, and to execute subroutines.

These language features allow the user to assemble a personal library of commonly used commands.
Individual commands and subroutines may be called from this library whenever they are wanted, and
simple labels may be substituted for relatively complicated subroutines or commands. The personal
statement library can be appended to the MAD dictionary, which makes the statements available
automatically when the program is started. Alternatively it can be placed in a user file and accessed on
demand via the CALL and RETURN commands. Good candidates for a subroutine library are command
sequences for the HARMON, Matching, or Tracking Module.

14.1 SUBROUTINE and ENDSUBROUTINE

The SUBROUTINE and ENDSUBROUTINE statements delimit a group of related statements which together
form the body of the subroutine. A subroutine definition, followed by a call, has the format

label: SUBROUTINE ! begin of subroutine "label"
e ! included statements
ENDSUBROUTINE ! end of subroutine "label"
. ! other commands
label ! call to subroutine "label"

The subroutine is given the name label. The statements included are checked and stored in memory,
but not executed until the subroutine is called. Example:

S: SUBROUTINE ! begin of definition for S
USE, SSC
SURVEY
TWISS

ENDSUBROUTINE ! end of definition for S

S ! here S is executed the first time

The size of a subroutine is limited only by the available memory space. A labelled command within
a subroutine may be called by its label from anywhere in the program. A subroutine cannot contain
another SUBROUTINE, DO or ENDDO statement. However, within a subroutine, nested calls to other
subroutines are permitted. Also, references to DO statements which have already been accepted by the
program are permitted.
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14.2 CALLSUBROUTINE

The CALLSUBROUTINE command causes execution of a group of commands previously assembled as a
subroutine or procedure. It is included in the language for formal purposes only, to make the call
explicit.

CALLSUBROUTINE,label

A statement consisting of label only is equivalent to CALLSUBROUTINE,label. The following are two
equivalent calls to a subroutine S:

S
CALLSUBROUTINE,S

14.3 DO and ENDDO

The DO statement allows grouping of one or more commands and offers an option to repeat their
execution. Both subroutines and commands may be included. The list of commands follows the DO
statement, and ends with an ENDDO:

DO,TIMES = integer]
{command}
ENDDO

The commands SUBROUTINE, ENDSUBROUTINE, or DO must not be placed between DO and ENDDO. Ex-
ample:

QUAD3:QUAD,L=1.5,K1=0.01

DO, TIMES=2
TWISS,DELTAP=-0.01:+0.01:0.002
SET, QUAD3[K1], QUAD3[K1]+0.001

ENDDO

This example shows how a SET statement may change parameters of the computations after each
iteration. The length of a DO list is not limited.



Chapter 15. Known Defects of Version 8

15.1 Definitions

MAD uses full 6 x 6 matrices to allow coupling effects to be treated, and the canonical variable set
T,z /Pos Yy Py/Poy —cAL, AE poc, as opposed to other programs most of which use the set z,2/, y, v/,
—As, §. Like the program MARYLIE [13], MAD uses the relative energy error AE/poc which is related
to the relative momentum error § by AE /poc = BAp/po = 6.

As from Version 8.13, MAD uses an additional constant momentum error §, = Ap/p, in all optical
calculations. The transfer maps contain the ezact dependence upon this value; therefore the tunes for
large deviations can be computed with high accuracy as opposed to previous versions.

The choice of canonical variables in MAD still leads to slightly different definitions of the lattice
functions. In MAD the Courant-Snyder invariants [10] take the form W, = y,2* — 2a,zp, + B,p2.
Comparison to the original form W, = v,2? — 2a,zz’ + (,2'? shows that the orbit functions cannot
be the same. A more detailed analysis, using ¢’ = p,/(1 + §), shows that all formulas can be made
consistent by defining the MAD orbit functions as

ﬁzM :ﬁz(1+5)7 Oz = Qpy  YzM :72/(1+5)

For constant §, along the beam line and § = 0, the lattice functions are the same. In a machine where
d§ varies along the circumference, e.g. in a linear accelerator or in an eTe™ storage ring, the definition
of the Courant-Snyder invariants must be generalised. The MAD invariants have the advantage that
they remain invariants along the beam line even for variable §.

With the new method this problem occurs in TWISS only for non-constant é.

15.1.1 Treatment of 9°Q/06? in TWISS

It has been noted in [23] that MAD returned tunes which are too low for non-zero Ap. The difference
was found to be quadratic in Ap with a negative coefficient. This problem has been eliminated thanks
to the new treatment of momentum errors from Version 8.13 onwards.
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Appendix A. Format of the SURVEY and TWISS Files

All output generated by the TAPE options of the commands SURVEY or TWISS has the same general
layout. The output is a coded file with default name SURVEY or TWISS. It consists of a header record,
a set of position records, and a trailer record.

A.1 Common Output

In all cases the header record has two lines. It has the format
(548,18,18,18/480)

and contains:

PROGVRSN The current version number of MAD,

DATAVRSN This field may contain the following strings:

SURVEY Output of the SURVEY command follows,
TWISS Output of the TWISS command (linear lattice functions), follows
CHROM Output for the CHROM option of the TWISS command follows,

DATE The date of the MAD run. This is the same date as on the printed output.

TIME The time of the MAD run. This is the same time as on the printed output.

JOBNAME The job name for the MAD run, if available from the operating system.

SUPER The number of superperiods.

SYMM The symmetry flag. This is true, if only one half of a symmetric super-period was
computed.

NPOS The number of position records that follow. This is larger by one than the number of
elements.

TITLE The page header as defined by the latest TITLE command.

There are NP0OS position records. Each of them contains four or five lines. The first two lines have the
format

(A4,A16,F12.6,3E16.9/5E16.9)
and contain the following information about the preceding element:
KEYWORD The element keyword,
NAME The element name,

Note that the TYPE parameter no longer occurs in this file. The remaining values are written according
to Table A.1. The first position record refers to the position preceding the first element. Its content is

KEYWORD=blank, NAME=’INITIAL’
All other values are zero. The remaining lines of the position records differ for the three cases.
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Table A.1: Element Data in Position Records

Keyword

DRIFT L|O 0 0 0 0 0 0 0
RBEND L | ANGLE | K1 K2 TILT | E1 E2 H1 H2
SBEND L | ANGLE | K1 K2 TILT | E1 E2 H1 H2
QUADRUPOLE L|O K1 0 TILT | 0 0 0 0
SEXTUPOLE L|O 0 K2 TILT | 0 0 0 0
O0CTUPOLE L|O 0 0 TILT | K3 0 0 0
MULTIPOLE 0 | KOL K1iL | K2L | TO K3L T1 T2 T3
SOLENOID L|O 0 0 0 KS 0 0 0
RFCAVITY L|O 0 0 0 FREQ VOLT | LAG | 0
ELSEPARATOR | L | 0 0 0 TILT | EFIELD | 0 0 0
KICKER L|O 0 0 TILT | HKICK 0 0 0
HKICKER L|O 0 0 TILT | KICK 0 0 0
VKICKER L|O 0 0 TILT | KICK 0 0 0
SROT 0,0 0 0 0 ANGLE 0 0 0
YROT 0,0 0 0 0 ANGLE 0 0 0
MONITOR L|O 0 0 0 0 0 0 0
HMONITOR L|O 0 0 0 0 0 0 0
VMONITOR L|O 0 0 0 0 0 0 0
MARKER 00 0 0 0 0 0 0 0

A.2 SURVEY Output

When DATAVRSN=SURVEY, the third and fourth lines of the position records have the format
(4E16.9/3E16.9)
and contain the global coordinates and the cumulative length in the order

X Y Z SUML
THETA PHI PSI

The trailer record has two lines in the format
(3E16.9/3E16.9)

and contains the coordinates of the machine centre, the minimum and maximum radius and the
machine circumference in the order

X Y Z
RMIN RMAX C

A.3 TWISS Output

When DATAVRSN=TWISS, the third to fifth lines of the position records have the format
(BE16.9/5E16.9/5E16.9)
and contain the quantities

ALFX BETX MUX DX DPX
ALFY BETY MUY DY DPY
X PX Y PY SUML



in this order. The trailer record has three lines in the format
(3E16.9/5E16.9/5E16.9)

and contains

DELTAP GAMTR C
COSMUX QX Qx’ BXMAX DXMAX
COSMUY QY Qy’ BYMAX DYMAX

in this order. If the COUPLE option was given, the output has the same format, but the quantities
given refer to the two possible modes (1,2) instead of referring to the two planes (z,y).

A.4 CHROM Output

When DATAVRSN=CHROM, the third to fifth lines of the position records have the format
(BE16.9/5E16.9/5E16.9)

and contain

WX PHIX DMUX DDX DDPX
WY PHITY DMUY DDY DDPY
X PX Y PY SUML

in this order. There is no trailer record in this case.



Appendix B. Format for File Names

The MAD program normally uses alphanumeric names for files. This Appendix describes the valid
formats for file names, as used in different computer operating systems.

B.1 IBM VM/CMS System

B.1.1 Standard Streams
The standard streams are defined within MAD with the names listed in Table B.1. At CERN, the

Table B.1: Standard Files Used by MAD, IBM-VM/CMS Version

Purpose unit | file name
DICT

Command dictionary input 4
Normal input 5
Input lines and error messages | 6
8
8

Plot output (GKS metafile) MAD METAFILE

Plot output (HIGZ metafile) MAD PS
Normal output 14 PRINT
Dynamic tables 15 TABLE

EXEC file MAD8 EXEC stored on the MAD disk performs the following default initialisations:

FILEDEF DICT DISK MAD8 DICT * FILEDEF 5 DISK TERMINAL
FILEDEF 6 DISK TERMINAL

FILEDEF PRINT DISK problem LISTING scratch

FILEDEF DUMP DISK problem DUMP scratch

FILEDEF METAFILE DISK MADPLOT METAFILE scratch

Problem is the name of the input file (or PROBLEM in interactive mode). Scratch is the mode of a
scratch disk created by the EXEC file. The behaviour of MAD can be adapted to the user’s needs by
changing the EXEC file.

B.1.2 User-Defined Files

All other file names must be chosen according to the VM/CMS conventions. Within MAD a file name
has one to three parts separated by dots

filename.filetype.filemode
filename.filetype

filetype

All letters are converted to uppercase. If all three parts are present, the file name is used as entered.
Example:

CALL,FILENAME="LEPTWO.DATA.D’

If two parts are present, they are taken as filename and filetype. The filemode defaults to *
for input files, or to the contents of the REXX variable SCRATCH for output files. SCRATCH The CERN
EXEC MAD8 EXEC sets this variable to the mode of a scratch disk. Examples:

CALL, FILENAME=’TEST .MAD’
TWISS, TAPE=’LEP.TWISS’
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Assume that the mode of the scratch disk is F. CALL requires an input file and TWISS an output file,
so these commands have the same effect as:

CALL, FILENAME=’TEST MAD x*°
TWISS, TAPE="LEP TWISS F’

If only one part appears, it is used as filetype. The filemode has the same default as above,
and filename defaults to the contents of the REXX variable PROBLEM. The CERN EXEC MAD8 EXEC
sets this variable to the filename of the DATA file, or if MAD runs interactively, to the value PROBLEM.
Example:

CALL, FILENAME="DATA’
CALL ! FILENAME=’SAVE’ is default
TWISS, TAPE ! FILENAME=’TWISS’ is default
TWISS, TAPE=’LATTICE’

Assume that the filename of the DATA file is LEP and the mode of the scratch disk is F. The above
examples have then the same effect as:

CALL, FILENAME='LEP DATA *’
CALL, FILENAME='LEP SAVE x*’
TWISS, TAPE="LEP TWISS F’
TWISS, TAPE=’LEP LATTICE F’

B.2 UNIX and UNICOS Systems

B.2.1 Standard Stream Names

The standard streams are defined within MAD with the names listed in Table B.2. Note that on
the Cray XMP the table file is not used; dynamic tables reside in SSD. File names are converted to

Table B.2: Standard Files Used by MAD, UNIX Version

Purpose unit | file name
dict

Command dictionary input 4
Normal input 5 stdin
Input lines and error messages | 6 stdout
8
8

Plot output (GKS metafile) mad.metafile

Plot output (HIGZ metafile) mad.ps
Normal output 14 print
Dynamic tables 15 table

upper case, unless they are enclosed in quotes. Without special action they refer to files in the user’s
working directory. They can be assigned other names by the 1n command entered at the keyboard or
issued in a shell script. Such a link is desired in particular for the command dictionary:

1n /usr/madman/mad.dict dict

This link makes the command dictionary available under the assumption that it resides in the file
/usr/madman/mad.dict. It is recommended to create a subdirectory for each problem, and to store
the data file in this subdirectory. MAD should then be run while this directory is current, so as to
create all output files in the same directory. This helps keeping related files together.



B.2.2 User-Defined Files

Other files can be assigned any name accepted by the UNIX system, with the restriction that MAD
accepts at most 40 characters, and that it converts file names to upper case unless enclosed in quotes.
Examples:

CALL, FILENAME=’ssc.data’
TWISS, TAPE=’ssc/twiss.data’

The first file is read in the user’s working directory, and the TWISS output is written on the file
twiss.data in the subdirectory ssc.

B.3 VAX VMS System

B.3.1 Standard Stream Names

The standard streams are defined within MAD with the names listed in Table B.3. Without special

Table B.3: Standard Files Used by MAD, VAX-VMS Version

Purpose unit | file name
Command dictionary input 4 DICT
Normal input 5

Input lines and error messages | 6

Plot output (GKS metafile) 8 METAFILE
Plot output (HIGZ metafile) | 8 MAD.PS
Normal output 14 PRINT
Dynamic tables 15 TABLE

action, these file names refer to files in the user’s working file directory. They can be assigned other
names by an ASSIGN command entered at the keyboard or issued in a DCL file. This is desirable in
particular for the command dictionary:

ASSIGN DISK$SI:[PUBSIIMAD8.DICT DICT

This command makes the dictionary available on the CERN central VAX system (VXCERN). The
other standard streams should be assigned by a sequence like

ASSIGN DISK$gg: [userlmad.print PRINT
ASSIGN DISK$gg: [userlmad.metafile METAFILE
B.3.2 User-Defined Files

Other files can be assigned any name accepted by the VMS system, with the restriction that MAD
accepts at most 40 characters. All letters are converted to upper case. Examples:

CALL, FILENAME=’SSC.DATA’
TWISS, TAPE="DISK$IZ[MADMAN]SSC.TWISS’
SURVEY, TAPE=’DISK$IZ[MADMAN.SSC]SURVEY.DATA’

The first file is read in the user’s working directory; the TWISS output is written on a file SSC.TWISS
in the current directory, and the SURVEY output is written on a file SURVEY.DATA in the subdirectory
SSC.



Appendix C. Format of TFS Files

TFS files (Table File System) are used in the LEP control system. Their use is documented in
Reference [11]. The MAD program knows only coded TFS files. This Appendix describes the special
formats used.

C.1 Descriptor Lines

MAD writes the following descriptors on all tables:

COMMENT The current title string from the most recent TITLE command.
ORIGIN The version of MAD used.
DATE The date of the MAD run.
TIME The wall clock time of the MAD run.
TYPE The type of the table:
TWISS Lattice function table.
OPTICS Output of the OPTICS command.
TRACK Track table.
TUNES Table of tunes and chromaticities versus AE /poc.

The track tables contain the following additional descriptors:

BETX Horizontal 3,,

ALFX Horizontal o,

BETY Vertical 3,,

ALFY Vertical a,,

X Horizontal orbit position,
PX Horizontal orbit slope,

Y Vertical orbit position,
PY Vertical orbit slope,

DX Horizontal dispersion,
DPX Horizontal dispersion slope,
DY Vertical dispersion,

DPY Vertical dispersion slope,

The format of descriptor lines is

(>e ’,A16,° ’, A4, ...)

Where the 416 format is used for the descriptor name, the A4 format for its format, and the remaining
information uses the format listed below for columns.
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C.2 Column Formats

The column formats used are listed in Table C.1. Control lines begin with the TFS control character,

Table C.1: Column Formats used in TFS Tables

C format | Meaning FORTRAN format

%hd Short integer (18)

Wit Long float (G20.12)

ht Short float (G14.6)

hks String of length k (G URLLY
Undefined value ¢~ )

followed by a blank. Data lines begin with two blanks. Columns are also separated by one blank
character. The column width is chosen such as to accommodate the large of the column name and
the data values of the column. Thus an integer column uses at least 8 characters to accommodate the
(18) format, but if its name has more than 8 characters, it becomes wider.
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x, 8, 14
+, 14
-, 14
58
/, 14
5y 11
[, 1
&, 11
[, 11
!

A, 58, 59
abbreviations, 13
ABS(X), 14
action commands, 47
ADD, 78, 81
ALFA, 7
ALFX, 6, 55, 59, 101, 120
ALFY, 6, 55, 59, 101, 120
alignment errors, 74
ALL, 82-84
AMPLITUDE(i), 108
ANGLE, 24, 31
angle, 8
rotation, 1
ANTI-PROTON, 49
aperture, 30
arc length, 5
ARCHIVE, 70, 72
arguments, 37
ASCALE, 85
ASIN(X), 14
ASSIGN, 70
assignment
parameter, 19
AT, 40
attribute, 11, 16
deferred, 16
element, 22
integer, 14
logical, 13
name, 11, 13, 17
real, 14
string, 13
value, 11
attribute, 22
axes
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global, 2
local, 2
azimuth, 1

bar, 11
BARS, 86
BCURRENT, 50
BEAM, 47, 48, 107, 109
beam
current, 50, 66
defaults, 50
beam interaction, 32
beam line, 36
arguments, 37
reference, 43
reflection, 37
repetition, 37
sequence, 38
simple, 36
used, 47
beam monitor, 30
beam monitor errors, 74
beam parameters, 64—69
beam size, 68
BEAMBEAN, 22, 32
BEAMPARAM, 64
bend
angle, 3
radius, 3
bending magnet, 3, 23
bending magnet errors, 77
BETAO, 55, 59, 99
BETATRON, 58, 59
BETRF, 29, 68

BETX, 6, 55, 59, 86, 88, 98, 101, 120

BETX,BETY, 88

BETY, 6, 55, 59, 86-88, 98, 101, 120

blanks, 11
BMPM, 64
BMPM, 64-69
braces, 11
BROT, 77
BUCKET, 65, 68
bunch, 49, 50
current, 50
length, 49
number, 49
BUNCHED, 50



BX’I, 94, 95
BX’S, 95
BXMAX, 7
BY, 41
BY’I, 94, 95
BY’S, 95
BYMAX, 7

C1LIST, 84
C2LIST, 83, 84
CALL, 70, 71
CALLS, 94, 102
CALLSUBROUTINE, 111, 112
canonical momentum, 4, 5, 7, 8
canonical variables, 4
cavity, 2, 29
CELL, 96
CENTRE, 39, 60
CHARGE, 32, 49
charge, 8, 49
CHROM, 53, 54, 114, 116
chromatic functions, 6, 53, 116
chromaticity, 54, 93
tuning, 93
CLASS, 60
class, 33
CLEAR, 51
CLIGHT, 15
CLORB, 65
closed orbit, 1, 69
COFACT, 18
collimator, 30
COLUMNS, 59, 60, 90
COMMAND, 18
command, 11
attribute, 11, 16
continuation, 11
dictionary, 70
format, 11
keyword, 11
label, 11, 12
option, 17, 18
commands
actions, 47
utility, 11
COMMENT, 120
comments, 11
concatenation, 34
CONJUGATE, 58, 59
CONSTANT, 15
constant, 15

CONSTRAINT, 96, 99
constraint, 16

periodic, 100

simple, 99

transfer map, 100
continuation, 11
CONTINUE, 109
conventions, 1
coordinate transformation, 31
coordinates

global, 1, 115

initial, 108

local, 1
CORRECT, 80, 81, 83
correction, accuracy, 83
correction, iteration, 84
corrector, 2, 28
corrector errors, 78
corrector number, 83
corrector tables, 83, 84
Co0S(X), 14
COUPLE, 53-55, 96, 100
coupling, 53, 64, 66
current, 8, 50, 66
CYCLE, 41

DAMP, 107
damping, 64
data
pool, 73
streams, 70-73, 114-121
DATAVRSN, 114
DATE, 114, 120
DBL, 76
DBLN, 77
DBLR, 77
DBLS, 77
DDPX, 6, 55, 59
DDPY, 7, 55, 59
DDX, 6, b5, 59
DDY, 7, b5, 59
DEBUG, 18
default beam, 50
defects, 113
deferred expression, 16
DEFINE, 18
definition
element, 22
line, 36
parameter, 19
DEGRAD, 15



DELQ, 65 EALIGN, 74

DELTAP, 5, 7, 8, 563-55, 58, 59, 87, 88, 97, 108 ECHO, 11, 13, 17, 70
DICT, 70 ECOLLIMATOR, 22, 30
dictionary, 70 edit

dipole, 3, 23 elements, 33
dipole errors, 77 EFCOMP, 74, 76
DISP, 93 EFIELD, 60, 74, 76
displacement, 2 EIGEN, 47, 57
distortion functions, 93 electric field, 8, 29
DKL(i), 77 ELECTRON, 49
DKLN(i), 77 electron beam parameters, 64—69
DKLR(i), 77 electrostatic separator, 2, 29
DKLS (i), 77 ELEMENT, 40, 41
DMUX, 6, 55, 59 element, 22

DMUY, 7, 55, 59 attribute, 16, 22
Do, 111, 112 class, 33
DOUBLE, 17 data, 115

DP, 60 edit, 33

DPHI, 75 format, 22
DPSI, 75 keyword, 22
DPX, 6, 55, 59, 101, 120 label, 22

DPY, 6, 55, 59, 101, 120 name, 22
DQXDEX, 94, 95 redefinition, 33

DQYDEX, 94, 95
DQYDEY, 94, 95
DRIFT, 22, 23, 115

sequence, 47
type, 22
elevation angle, 1

drift, 2 ELSEPARATOR, 22, 29, 115
DS, 75 EMASS , 15
DTHETA, 75

EMIT, 47, 57, 107, 109

dump pool, 73 emittance, 8

DX, 6, 55, 59, 74, 80, 101, 120 coupling, 64

DX: :I, 94 horizontal, 49
DX, S, 95 longitudinal, 49
DX, I,94, 95 normalised, 49
DX’S, 95 vertical, 49
DXMAX, 7

ENDDO, 111, 112
DXWEIGHT, 83, 84 P

ENDEDIT, 40
DY, 6, 55, 59, 75, 80, 101, 120 EDEARA. 92
DY’I, 95
DY’S. 95 ENDMATCH, 96, 98
9
DYMAX, 7 ENDSEQUENCE, 38

ENDSUBROUTINE, 111, 112
ENDTRACK, 107
ENERGY, 49, 50

DYNAMIC, 47, 58, 59
dynamic table, 72, 73
dynamic tables, 70

DYWEIGHT, 83, 84 energy, 8, 49
error, 1
E, 29 spread, 49
#E, 45 energy error, 5, 7, 8, 53
E,15 ENTRY, 39
E1, 24, 60 ENVELOPE, 47, 57, 58

E2, 24, 60 EQPT, 74, 78



EPRINT, 74, 79 components, 4

ERROR, 83 electric, 29
error expansion, 4
alignment, 74 fringe integral, 24
corrector, 78 magnetic, 4
definitions, 74-79 field errors, 75
dipole, 77 file names, 117
energy, 5, 7, 8, 53 FILENAME, 9, 59, 60, 71-73, 80, 81
field, 75 files, 70-73, 114-121
momentum, 5, 7, 8, 53 files, user-defined, 117, 119
monitor, 74 FINT, 24
multipole, 78 FIRST, 51
options, 78 fit point, 45
printing, 79 FIX, 96, 99
quadrupole, 78 FIXED, 58, 59
random, 74 FLAG, 51
sextupole, 78 flag, 13
error messages, 70 flat machine, 64
ET, 49, 50 FONT, 85
EVARY, 65 formal arguments, 37
EX, 49, 50 format
examples command, 11
constraint, 104 element, 22
EALIGN, 62 label, 13
HARMON, 95 name, 13
matching, 103-106 FPRINT, 110
OPTICS, 62 FRACTION, 52
place, 62 FREQ, 60
PRINT, 62 frequency, 8
range, 62 FREQUENCY (i), 108
spin matching, 104 fringe field, 24
SPLIT, 62 FROM, 40, 41
track, 110 FT, 109
transfer map constraint, 104 FULL, 51, 79
EXCITE, 70, 72 function, 14
EXDATA, 65 functions
EXIT, 39 chromatic, 6, 53, 116
EXN, 49 distortion, 93
EXP(X), 14 lattice, 6, 53, 85, 115
EXPONENT, 58, 59 FX, 65, 68, 92, 109
EXPRESS, 18 FY, 65, 68, 92, 109
expression, 14, 16, 19
EY, 49, 50 GAMMA, 49
EYN, 49 GAMMATR, 7
garbage removal, 73
#F, 45 GAUSS(), 14
.FALSE., 13 geometry, 52, 115
FE, 92 GETDISP, 80, 82
FFILE, 110 GETKICK, 80, 81
FFT, 87 GETORBIT, 80-82

field, 8 GKSGRAL, 86



global INTERACT, 65, 66

coordinates, 1 intra-beam scattering, 56

reference, 1 INVARIANT, 58, 59
global axes, 2 invariant
gradient minimisation, 102 horizontal, 5
grep, 8 longitudinal, 5
GXPLOT, 85 vertical, 5

ITERATE, 84
H1, 25, 60
H2, 25, 60 JOBNAME, 114
HAMILTON, 58, 59
HARMON, 29, 60, 92 KN H, 81
HARMON, 92-95 KN_V, 81
HAXIS, 86, 88 KOL, 60
HCELL, 92, 94, 95 K1, 24, 26
HCHROMATICITY, 92, 93 K2, 25, 26
HELP, 11, 12 K3, 26, 27
HFUNCTION, 92 KAPPA, 64, 65
HFUNCTIONS, 94 KBUNCH, 49, 50
HGAP, 24 KEYWORD, 18, 60, 114
high order modes, 8 keyword, 11
HKICK, 28, 60 element, 22
HKICKER, 22, 28, 82, 115 format, 13
HMAX, 87 help, 12
HMIN, 87 KHM, 65
HMONITOR, 22, 30, 82, 115 KICK, 28
horizontal invariant, 5 KICKER, 22, 28, 82, 115
horizontal phase, 5 KnL, 27, 60
horizontal position, 4, 5, 7 KS, 28, 60
HRESONANCE, 92, 93
HTUNE, 92, 93 L, 23, 24, 26-30, 60
HVARY, 92, 93, 95 #L, 45
HWEIGHT, 92, 95 LABEL, 55, 58
label, 11, 12

T412, 65 element, 22
IBM, 117 format, 13
IBS, 47, 56 line, 36
identifier format, 13 list, 43
impedance, 8 sequence, 38
INCREMENT, 70, 72 show, 13
INFO, 18 label, 11
initial conditions, 108 LAG, 29, 60, 68
initial values, lattice, 54, b5 lag
INPUT, 70 time, 8
input, 70 lag (time), 5

lines, 11 lattice functions, 6, 53, 85, 115
insertion matching, 97 lattice parameters, 55
INSTALL, 40 length, 8
INSTRUMENT, 22, 30 LEVEL, 96, 101
integer, 14 LIE, 51

INTER, 17 LIE3, 109



LIE4, 110
limits
matching, 98
LINE, 18, 36, 54, 58, 59
line, 36
label, 36
reference, 43
lines, 36—46
LIST, 43
list
label, 43
replacement, 43
restrictions, 44
LMDIF, 96, 102
local
origin, 1
reference, 1
local axes, 2
local coordinates, 1
LOG(X), 14
logical, 13
longitudinal invariant, 5
LOWER, 94, 98
lower case, 11
LRAD, 27
LSCALE, 85
luminosity, 64, 66
LUMP, 22, 34
LWIDTH, 85

M1LIST, 83, 84
M2LIST, 84
machine parameters, 66
magnetic field, 4
main beam line, 47
MAP, 58
MARKER, 3, 22, 23, 115
MASS, 49
mass, 8, 49
MATCH, 96, 97
matching, 96-106
limits, 98
methods, 102
output, 101
weight, 101
MATRIX, 22, 33
MAX(X,Y), 14
MAXPLOT, 86, 88
METHOD, 109
method (tracking), 109
MICADO, 80-82

MIDARC, 65, 68

MIGRAD, 96, 101, 102

MIN(X,Y), 14

misalignment errors, 74

MODE, 82

momentum, 5, 8, 49
canonical, 4, 5, 7, 8
error, 1
normalised, 5

momentum error, 5, 7, 8, 53

MONITOR, 22, 30, 82, 115
monitor, 2, 30

monitor errors, 74
monitor tables, 83, 84
MOVE, 41

MREX, 74, 75
MREY, 74, 75
MULTIPLE, 86, 88

MULTIPOLE, 22, 27, 75, 93, 115

multipole, 8
multipole coefficients, 4
multipole errors, 78

MUX, 6, 53-55, 59, 97, 100, 101
MUY, 6, 53-55, 59, 97, 100, 101

N, 58, 59

NAME, 9, 60, 72, 90, 93, 98, 99, 114

name, 13

format, 13

show, 13
NCORR, 83
NINT, 65
NOISE, 107, 108
noise, 108
NONE, 83, 84
NONLINEAR, 58, 59
NORMAL, 58, 90
normalised emittance, 49
normalised variables, 5
NPART, 49, 50
NPOS, 114
NTMAX, 89

observation point, 45
observation points, 46
OBSERVE, 107, 108
O0CTUPOLE, 22, 27, 115
octupole, 2

ONEPASS, 107
operand, 15

operating system command, 20



operator, 14
OPTICS, 51, 52, 59, 120
OPTION, 11
option
command, 18
ORBIT, 58, 59, 97-99
orbit
closed, 1, 69
reference, 1
orbit correction, 80-84
orbit corrector, 28
ORDER, 93
orientation, 2
ORIGIN, 120
output, 70
output frequency, 110

PACKMEMORY, 70, 73
page header, 17
PARAM, 87, 88
parameter, 19-20
label, 16
name, 17, 19
RF, 67
value, 19
PARTICLE, 49, 50, 87, 88
particle
bank, 109
charge, 49
energy, 49
mass, 49
momentum, 49
PATTERN, 9, 71
PC, 49
PERIOD, 48
periodic solution, 54
PG, 29
phase, 53, 100
horizontal, 5
vertical, 5
phase advance, 100
PHASE(i), 108
PHIO, 52
PHIT, 5, 109
PHIX, 5, 6, 55, 59, 109
PHIY, 5, 7, 55, 59, 109
physical element, 22
physical units, 8
PI , 15
PLACE, 55, 58, 108
place examples, 62

PLANE, 81, 83, 84
PLOT, 85, 86, 89
plot, 70, 85-91
PMASS , 15
pool, 73

dump, 73

reload, 73
POOLDUMP, 70, 73
POOLLOAD, 70
position

horizontal, 4, 5, 7

vertical, 4, 5, 7
POSITRON, 49
potential, 4
power, 8
power supply noise, 108
PRINT, 47, 51, 70
print frequency, 110
PROBLEM, 118
procedure, 111
PROGVRSN, 114
PROTON, 49
PSIO, 52
PT, 5, 55, 59, 99, 101
PTN, 5
PUNAME, 80, 81
PUTDISP, 80
PUTKICK, 80, 81
PUTORBIT, 80, 81
PX, 4, 7, 55, 59, 88, 101, 108, 120
PXN, 5
PY, 5, 8, 55, 59, 101, 108, 120
PYN, 5

QCONDi, 89

Qs, 107
QUADRUPOLE, 22, 26, 115
quadrupole, 2, 8
quadrupole errors, 78
QUANTUM, 107

QX, 7

QX’, 93-95
QX’’, 94, 95
QX’’7, 94, 95
QY, 7

QY’, 93-95
QY’’, 94, 95
QY’’ 7, 94, 95
RADDEG, 15
RADIATE, 50



radiation, 50, 68 rotation, 3, 31

RADIUS, 76 rotation angle, 1

RADLOSS, 60 RSCALE, 85

random RUN, 7, 107, 109
generator, 14 RXI, 94, 95
seed, 78 RXS, 95

random error, 74 RYI, 95

random values, 16 RYS, 95

RANF(), 14

RANGE, 48, 51, 65, 68, 74, 76, 79, 82, 87, 100 8, 5, 60, 87, 88

#s, 45
range, 45, 74

SAVE, 53-55, 57, 70, 71
SAVEBETA, 55, 98
SAVESIGMA, 58

range examples, 46, 62
RBEND, 22, 24, 93, 115

ggggi,gz SBEND, 22, 24, 93, 115

RBXMA;{ o scattering (intra-beam), 56
’ SCRATCH, 117

RBYMAX, 87 SECOND, 51

RCOLLIMATOR, 22, 30 SEED,7%

real, 14% ‘ seed (random generator), 78

redefinition, 33 SELECT, 47, 51, 52

REFER, 39, 51 selection examples, 46

reference

selection point, 45

beam line, 43 separator, 2, 29

orbit, 1 SEQEDIT, 40

system, 1, 3 SEQUENCE, 36, 38, 40
REFLECT, 41 sequence, 39, 47
reflection, 37 label, 38
relation, 19 SET, 11, 19
relativistic, 5 SETPLOT, 85, 86
reload pool, 73 SEXTUPOLE, 22, 26, 93, 115
REMOVE, 40 sextupole, 2
repetition, 37 sextupole errors, 78
replacement list, 43 SHOW, 11, 13
RESET, 17 SHUNT, 29
RESONANCE, 58, 59 SIGE, 49
resonances, 93 SIGMAO, 57, 58
RESPLOT, 85 SIGT, 49
restrictions on lists, 44 SIGX, 32
RETRIEVE, 60, 70, 73 SIGxx, 58
RETURN, 70, 71 SIGY, 32
REXX, 117, 118 simple beam line, 36
RF, 8 SIMPLEX, 96, 102
RF cavity, 2 SIN(X), 14
RF parameters, 67 SINGLE, 65, 68
RFCAVITY, 22, 29, 58, 59, 115 SOLENOID, 22, 28, 115
Rij, 58 solenoid, 2
RM(i,k), 33, 100 SORT, 86
RMATRIX, 96, 100 SPLINE, 86
roll angle, 1 SPLIT, 52

ROT (i), 77 SQRT(X), 14



SROT, 22, 31, 115 TGAUSS (X), 15

SSCALE, 85, 86 THETAO, 52

START, 107-109 TILT, 25-29, 60, 78

statement, 11 tilt angle, 1

STATIC, 47, 58, 59 TIME, 114, 120

STATUS, 70, 73, 8082 time lag, 5, 8

STEP, 94, 98 TITLE, 11, 17, 87, 114

step size, 98 ™(i,k,1), 33,100

STOP, 11, 17 TMATRIX, 96, 100

STR_NAME, 81 TN, b

STRATEGY, 102 Tn, 27

streams, 70-73, 114-121 TO, 41

STRING, 85, 90 TOLERANCE, 93, 102

string, 13 Tolerance, 94

STYLE, 86 total energy, 49

sub-line, 37 TOUSCH, 65

SUBROUTINE, 111, 112 TRACE, 17

subroutines, 111-112 TRACK, 51, 107, 109, 120

substitution list, 43 track table, 7, 86, 88, 110

SUM, 90 tracking, 107-110

SUPER, 48, 54, 55, 114 method, 109

super-period, 48 transfer map constraints, 100

SURVEY, 47, 52, 114, 115 TRANSPORT, 109

SYMBOL, 86 .TRUE., 13

symbolic constant, 15 TSAVE, 107, 109

SYMM, 48, 54, 55, 114 tune, 54

SYMPL, 18 TUNES, 7, 54, 120

synchrotron tunes table, 88
integrals, 66 TURNS, 87, 88, 110
radiation, 50, 68 TWISS, 7, 47, 51, 53-55, 87, 114, 115, 120

synchrotron tune, 107 twiss table, 87

SYNRAD, 65 TWISS3, 47, 57, 58

SYSTEM, 11, 20 TWOPI , 15

TYPE, 22, 51, 60, 74, 76, 79, 114, 120
T, 5, 8, 55, 58, 59, 99, 101, 108

TABLE, 56, 72, 73, 85, 87, 90, 108, 110 UNICOS, 118
table units, 4, 8

TFS, 81 UNIX, 118

track, 7, 86, 88, 110 UNIX, 20

tunes, 88 UNUSED, 82

twiss, 87 UPPER, 94, 98
tables, 70 UPPER CASE, 11
TAN(X), 14 USE, 39, 47, 51, 80, 107
TAPE, 53-55, 114 USED, 82-84
TAUQ, 65 USEKICK, 80, 82
TELL, 18 USEMONITOR, 80, 82
TERMINAL, 70 user files, 117, 119
TFILL, 29 USERO(), 15
TFS, 121 USER1(X), 15
TFS files, 120 USER2(X,Y), 15

TFS table, 81 utility commands, 11



VALUE, 11, 19, 72
VARIABLE, 108
variable, 16, 98
variables, 4
canonical, 4
normalised, 5
VARY, 96, 98
VAX VMS, 119
VAXIS, 86
VAXIS1, 86
VAXIS2, 86
VAXIS3, 86
VAXIS4, 86
vector potential, 4
VERIFY, 17
vertical bar, 11

vertical invariant, 5

vertical phase, 5

vertical position, 4, 5, 7

VKICK, 28, 60

VKICKER, 22, 28, 82, 115

VM/CMS, 20, 117
VMAX, 87
VMIN, 87

VMONITOR, 22, 30, 82, 115

VOLT, 29, 60
voltage, 8

WARN, 18

WEIGHT, 96, 100, 101
weight (matching), 101

wild-card, 8, 71

working beam line, 47

WT, 5
WX, 5, 6, 55, 59
WY, 5, 7, 55, 59

X, 1,4, 7, 55, 59, 81, 83, 84, 88, 101, 108, 120

X0, 52
XIX, 7
XIY, 7

XMA, 32
XMAX, 7
XN, 5
XRMS, 7
XSIZE, 30, 85

Y, 1,4, 7, 55, 59, 81, 83, 84, 101, 108, 120

Y0, 52
YMA, 32
YMAX, 7

YN, 5

YRMS, 7
YROT, 22, 31, 115
YSIZE, 30, 85

z,1
Z0, 52



